ORIGINAL PAPER
A New C0 2D Fe Model Based on Improved Higher Order Zigzag Theory for the Analysis of Soft Core Sandwich Plate
 
More details
Hide details
1
Department of Civil Engineering Indian Institute of Technology Roorkee Roorkee-247667, INDIA
 
 
Online publication date: 2013-06-08
 
 
Publication date: 2013-06-01
 
 
International Journal of Applied Mechanics and Engineering 2013;18(2):395-423
 
KEYWORDS
ABSTRACT
An efficient C0 continuous finite element (FE) model is developed based on a combined theory (refine higher order shear deformation theory (RHSDT) and least square error (LSE) method) for the static analysis of a soft core sandwich plate. In this (RHSDT) theory, the in-plane displacement field for the face sheets and the core is obtained by superposing a global cubically varying displacement field on a zig-zag linearly varying displacement field with a different slope in each layer. The transverse displacement assumes to have a quadratic variation within the core and it remains constant in the faces beyond the core. The proposed model satisfies the condition of transverse shear stress continuity at the layer interfaces and the zero transverse shear stress condition at the top and bottom of the sandwich plate. The nodal field variables are chosen in an efficient manner to circumvent the problem of C1 continuity requirement of the transverse displacements. In order to calculate the accurate through thickness transverse stresses variation, the Least Square Error (LSE) method has been used at the post processing stage. The proposed combined model (RHSDT and LSE) is implemented to analyze the laminated composites and sandwich plates. Many new results are also presented which should be useful for future research.
REFERENCES (77)
1.
Averill R.C. (1994): Static and dynamic response of moderately thick laminated beams with damage. - Composites Engineering Journal, vol.4, pp.381-395.
 
2.
Averill R.C. and Yip Y.C. (1996): Development of simple, robust finite elements based on refined theories for thick laminated beams. - Composite Structures, vol.59, pp.661-666.
 
3.
Aitharaju V.R. and Averill R.C. (1999): C0 Zigzag kinematic displacement models for the analysis of laminated composites. - Mech. of Comp. Mat. and Struct., vol.6, pp.31-56.
 
4.
Aagaah M.R., Mahinfalah M. and Jazar G.N. (2003): Linear static analysis and finite element modeling for laminated composite plates using third order shear deformation theory. - Composite Structures, vol.62, pp.27-39.
 
5.
Akhras G. and Li W. (2007): Spline finite strip analysis of composite plates based on higher order zigzag composite plate theory. - Composite Structures, vol.78, pp.112-118.
 
6.
Aydogdu M. (2009): A new shear deformation theory for laminated composite plates. - Composite Structures, vol.89, pp.94-101.
 
7.
Bhaskar K. and Varadan T.K. (1989): Refinement of higher order laminated plate theories. - AIAA J., vol.27, pp.1830-31.
 
8.
Bambole A.N. and Desai Y.M. (2007): Hybrid-interface finite element for laminated composite and sandwich beams. - Finite Element in Analysis and Design, vol.43, pp.1023-36.
 
9.
Cho M. and Parmerter R.R. (1992): An efficient higher order plate theory for laminated composites. - Compos. Struct., vol.20, pp.113-23.
 
10.
Cho M. and Parmerter R.R. (1993): Efficient higher order composite plate theory for general lamination configurations. - AIAA J., vol.31(7), pp.1299-1306.
 
11.
Carrera E. (1996): C0 Reissner-Mindlin multilayered plate element including zigzag and interlaminar stress continuity. - Int. J. for Numerical Methods in Engineering, vol.39, pp.1797-1820.
 
12.
Cho Y.B. and Averill R.C. (1997): An improved theory and finite element model for laminated beams using first order zigzag sub-laminate approximations. - Composite Structure, vol.37, pp. 281-298.
 
13.
Cho Y.B. and Averill R.C. (2000): First order zigzag sub-laminate plate theory and finite element model for laminated composite and sandwich panels. - Composite Structures, vol.50, pp. 1-15.
 
14.
Carrera E. (2004): On the use of the Murakami’s zig-zag function in the modeling of layered plates and shells. - Compos. Struct., vol.82, pp.541-554.
 
15.
Chakrabarti A. and Sheikh A.H. (2004): A new triangular element to model inter-laminar shear stress continuous plate theory. - Int. J. Num. Meth. Eng., vol.60, pp.1237-1257.
 
16.
Chakrabarti A., Chalak H.D., Iqbal A. and Sheikh A.H. (2011): A new FE model based on higher order zigzag theory for the analysis of laminated sandwich beam with soft core. - Composite Structures, vol.93, pp.271-279.
 
17.
Di Sciuva M. (1984): A refined transverse shear deformation theory for multilayered anisotropic plates. - Atti. Academia Scienze Torino, vol.118, pp.279-95.
 
18.
Di Scuiva M. (1987): An improved shear deformation theory for moderately thick multilayered anisotropic shells and plates. - Journal of Applied Mechanics, vol.54, pp.589-596.
 
19.
Di Scuiva M. (1992): Multilayered anisotropic plate models with continuous interlaminar stress. - Comput. Struct., vol.22(3), pp.149-67.
 
20.
Di Sciuva M. (1993): A general quadrilateral multilayered plate element with continuous interlaminar stresses. - Computer Structures, vol.47, pp.91-105.
 
21.
Di Sciuva M. (1995): Development of anisotropic multilayered shear deformable rectangular plate element. - Computer Structures, vol.21, pp.789-796.
 
22.
Demasi L. (2005): Refined multilayered plate elements based on Murakami zig-zag functions. - Compos. Struct., vol.70, pp.308-316.
 
23.
Demasi L. (2009): Mixed plate theories based on generalized unified formulation Part IV: zig-zag theories. - Compos. Struct., vol.87, pp.195-205.
 
24.
Demasi L. (2009 ): Mixed plate theories based on generalized unified formulation. - Part V: Results. - Compos. Struct., vol.88, pp.1-16.
 
25.
Frosting Y. (2003): Classical and high order computational models in the analysis of modern sandwich panels. - Composites: Part B, vol.34, pp.83-100.
 
26.
Fares M.E. and Elmarghany M.K.H. (2008): A refined zigzag non-linear first order shear deformation theory of composite laminated plates. - Composite Structures, vol.82, pp.71-83.
 
27.
Ferreira A.J.M., Roque C.M.C., Carrera E. and Cinefra M. (2011): Analysis of thick isotropic and cross ply laminated plates by radial basis function and a unified formulation. - Journal of Sound and Vibration, vol.330, pp.771-787.
 
28.
Ferreira A.J.M., Roque C.M.C., Carrera E., Cinefra M. and Polit O. (2011): Radial basis functions collocation and a unified formulation for bending, vibration and buckling analysis of laminated plates, according to variation of Murakami’s zigzag theory. - Eur. J. Mech., vol.30(4), pp.559-570.
 
29.
Givil H.S., Rabinovitch O. and Frostig Y. (2007): High-order non-linear contact effects in the dynamic behavior of delaminated sandwich panel with a flexible core. - International Journal of Solids and Structures, vol.44, pp.77-99.
 
30.
Goyal V.K. and Kapania R.K. (2007): A shear deformeable beam element for analysis of laminated composites. - Finite Element in Analysis and Design, vol.43, pp.463-477.
 
31.
Icardi U. (2001): A three dimensional zigzag theory for analysis of thick laminated beams. - Composite Structures, vol.53, pp.123-135.
 
32.
Icardi U. (2003): Applications of zigzag theories to sandwich beams. - Mechanics of Advanced Materials and Structures, vol.10, pp.77-97.
 
33.
Kant T. (1982): Numerical analysis of thick plates. - Comp. Meth. Appl. Mech. Eng., vol.44(4), pp.1-18.
 
34.
Kant T. and Swaminathan A. (2002): Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory. - Composite Structures, vol.56, pp.329-344.
 
35.
Kim J.S. and Cho M. (2005): Enhanced first-order shear deformation theory for laminated and sandwich plates. - Journal of Applied Mechanics, vol.72, pp.809-817.
 
36.
Kim J.S. and Cho M. (2006): Enhanced modeling of laminated and sandwich plates via strain energy transformation. - Composites Science and Technology, vol.66, pp.1575-1587.
 
37.
Kim J.S. and Cho M. (2007): Enhanced first-order theory based on mixed formulation and transverse normal effect. - Int. J. of Solids and Struct., vol.44(3-4), pp.1256-1276.
 
38.
Kulkarni S.D. and Kapuria S. (2007): A new discrete Kirchhoff quadrilateral element based on the third order theory for composite plates. - Computational Mechanics, vol.39, pp.237-246.
 
39.
Kapuria S. and Kulkarni S.D. (2007): An improved discrete Kirchhoff element based on third order zigzag theory for static analysis of composite and sandwich plates. - Int. J. Num. Meth. Eng., vol.69, pp.1948-1981.
 
40.
Khandelwal R.P., Chakrabarti A. and Bhargava P. (2012): An efficient FE model and least square error method for accurate calculation of transverse stresses in composites and sandwich laminates. - Composites: Part B. Accepted.
 
41.
Lo K.H., Christensen R.M. and Wu E.M. (1977): A higher order theory of plate deformation, Part2. Laminated plates. - J. Appl. Mech. Trans. ASME, vol.44, pp.669-76.
 
42.
Liou W.J. and Sun C.T. (1987): A three dimensional hybrid stress isoparametric element for analysis of laminated composite plates. - Computers and Structures, vol.25(2), pp.241-249.
 
43.
Lee K.H., Senthilnathan N.R., Lim S.P. and Chow S.T. (1990): An improved zigzag model for the bending of laminated composite plates. - Composite Structures, vol.15, pp.137-148.
 
44.
Lu X. and Liu D. (1992): An interlaminar shear stress continuity theory for both thin and thick laminates. - ASME Journal of Applied Mechanics, vol.59, pp.502-509.
 
45.
Li X. and Liu D. (1995): Zigzag theory for composite laminates. - AIAA J., vol.33, No.6, pp.1163-65.
 
46.
Liu D. and Li X. (1996): An overall view of laminate theories based on displacement hypothesis. - J. Compos. Mater., vol.30, pp.1539-61.
 
47.
Murakami H. (1986): Laminated composite plate theory with improved in-plane responses. - Journal of Applied Mechanics, vol.53, pp.661-666.
 
48.
Manjunatha B.S. and Kant T. (1992): A comparison of nine and sixteen noded quadrilateral elements based on higher order laminate theories for estimation of transverse stresses. - J. Reinf. Plast. Compos., vol.11, pp.986-1002.
 
49.
Pagano N.J. (1970): Exact solutions for rectangular bidirectional composites and sandwich plates. - Journal of Composite Materials, vol.4, pp.20-35.
 
50.
Pervez T., Seibi A.C. and Al-Jahwari F.K.S. (2005): Analysis of thick orthotropic laminated composite plates based on higher order shear deformation theory. - Composite Structures, vol.71, pp.414-422.
 
51.
Pandit M.K., Sheikh A.H. and Singh B.N. (2008): An improved higher order zigzag theory for the static analysis of laminated sandwich plate with soft-core. - Finite Element in Analysis and Design, vol.44, pp.602-10.
 
52.
Pandit M.K., Sheikh A.H. and Singh B.N. (2008): Buckling of laminated sandwich plates with soft core based on an improved higher order zigzag theory. - Thin-Walled Structures, vol.46, pp.1183-1191.
 
53.
Pandit M.K., Sheikh A.H. and Singh B.N. (2010): Stochastic perturbation based finite element for deflection statistics of soft core sandwich plate with random material properties. - Int. J. Mech. Sci., vol.51, No.5, pp.14-23.
 
54.
Reissner E. (1944): On the theory of bending of elastic plates. - J. Math. Physics, vol.23, pp.184-191.
 
55.
Reddy J.N. (1984): A simple higher-order theory for laminated composite plates. - J. Appl. Mech. Trans. ASME, vol.51, pp.745-52.
 
56.
Reddy J.N. (1987): A generalization of two dimensional theories of laminated composite plates. - Commn. Appl. Numer. Meth., vol.3, pp.173-180.
 
57.
Robbins D.H. and Reddy J.N. (1993): Modeling of thick composites using a layerwise laminate theory. - Int. J. Numer. Methods Eng., vol.36, pp.655-77.
 
58.
Robbins D.H. and Reddy J.N. (1996): Theories and computational models for composite laminates. - Applied Mechanics Rev., vol.49, pp.155-199.
 
59.
Rao M.K., Desai Y.M. and Chitnis M.R. (2001): Free vibrations of laminated beams using mixed theory. - Composite Structures, vol.52, pp.149-160.
 
60.
Ramtekkar G.S. and Desai Y.M. (2002): Natural vibrations of laminated composite beams by using mixed finite element modeling. - Journal of Sound and Vib., vol.257(4), pp.635-651.
 
61.
Ramtekkar G.S., Desai Y.M. and Shah A.H. (2003): Application of a three dimensional mixed finite element model to the flexure of sandwich plate. - Comput. and Struct., vol.81, pp.2383-2398.
 
62.
Ramesh S.S., Wang C.M., Reddy J.N. and Ang K.K. (2009): A higher order plate element for the accurate prediction of interlaminar stresses in laminated composite plates. - Composite Structures, vol.91, pp.337-357.
 
63.
Roque C.M.C., Cunha D., Shu C. and Ferreira A.J.M. (2011): A local radial basis functions- finite differences techniques for the analysis of composite plates. - Eng. Ana. Boun. Elem., vol.35, pp.363-374.
 
64.
Rodrigues J.D., Roque C.M.C., Ferreira A.J.M., Carrera E. and Cinefra M. (2011): Radial basis functions collocation and a unified formulation for bending, vibration and buckling analysis of laminated plates, according to variation of Murakami’s zigzag theory. - Composite Structures, vol.93(7), pp.1613-1620.
 
65.
Sheikh A.H. and Chakrabarti A. (2003): A new plate bending element based on higher order shear deformation theory for the analysis of composite plates. - Fin. Elem. Anal. Des., vol.39(9), pp.883-903.
 
66.
Sheikh A.H. and Chakrabarti A. (2003): A new Plate bending element based on higher order shear deformation theory for the analysis of composite plates. - Finite Element in Analysis and Design, vol.39, pp.883-903.
 
67.
Singh S.K., Chakrabarti A., Bera P. and Sony J.S.D. (2011): An efficient C0 FE model for the analysis of composites and sandwich laminates with general layup. - Lat. Ame. J. Sol. Struc., vol.8, pp.197-212.
 
68.
Srinivas S. (1973): A refined analysis of composite laminates. - J. Sound Vibration, vol.30, pp.495-507.
 
69.
Toledano A. and Murakami H. (1987): A composite plate theory for arbitrary laminate configuration. - J. Appl. Mech., vol.54(1), pp.181-89.
 
70.
Tu T.M., Thach L.N. and Quoc T.H. (2010): Finite element modeling for bending and vibration analysis of laminated and sandwich composite plates based on higher order theory. - Computational Material Science, vol.49, pp.390-394.
 
71.
Vlachoutsis S. (1992): Shear correction factors for plates and shells. - Int. J. Num. Methods Eng., vol.33(7), pp.1537-52.
 
72.
Wu Z., Chen R. and Chen W. (2005): Refined laminated plate element based on global local higher order shear deformation theory. - Composite Structures, vol.70, pp.135-152.
 
73.
Wu Z., Lo S.H., Sze K.Y. and Chen W. (2012): A higher order finite element including transverse normal strain including for linear elastic composite plates with general lamination configurations. - Finite Element in Analysis and Design, vol.48, pp.1346-1357.
 
74.
Yang P.C., Norris C.H. and Stavsky Y. (1996): Elastic wave propagation in heterogeneous plates. - Int. J. Solids Structure, vol.2, pp.665-84.
 
75.
Yip Y.C. and Averill R.C. (1996): Thick beam theory and finite element model with zigzag sub-laminate approximations. - AIAA., vol.34, pp.1627-1632.
 
76.
Zhen W., Wanji C. and Xiaohui R. (2010): An accurate higher-order theory and C0 finite element for free vibration analysis of laminated composite and sandwich plates. - Compos. Struct., vol.92, pp.1299-1307.
 
77.
Zhen W. and Wanji C. (2010): A C0-type higher-order-theory for bending analysis of laminated composite and sandwich plates. - Compos. Struct., vol.92, pp.653-661.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top