ORIGINAL PAPER
A Practical Alternative Model To Approximate A Fully Two Dimensional Thermally Non-Symmetric Annular Fin Efficiency
 
More details
Hide details
1
Mechanical engineering, Biomaterials and transport phenomena, Algeria
 
 
Submission date: 2024-04-14
 
 
Final revision date: 2024-07-29
 
 
Acceptance date: 2024-08-07
 
 
Online publication date: 2024-12-12
 
 
Publication date: 2024-12-12
 
 
Corresponding author
Bouaziz Mohamed Najib   

Mechanical engineering, Biomaterials and transport phenomena, Pole univesitaire, 26000, Medea, Algeria
 
 
International Journal of Applied Mechanics and Engineering 2024;29(4):61-77
 
KEYWORDS
TOPICS
ABSTRACT
A new practical and approximate two-dimensional is developed to take into account the thermally non-symmetric annular tick fin model and to avoid the laborious solution involving additional calculation of infinite eigenvalues. Using the perturbation method, a representative with satisfactory accuracy model is produced. For convenience, the developed analytical model is used here, in its numerical version, to show its validity and for an investigation of the effects of significant parameters on the efficiency of the annular fin. The same outcomes are obtained when the 1-D and present model are compared using the corresponding values. Then, different and easier calculations are carried out to illustrate the impact of the three primary parameters- the thickness, the asymmetry ratio, and the end Biot number- that define the annular fins. It is shown that, for thick or thin fins, the unequal convection heat coefficients of the the two surfaces have a significant impact on the distribution temperature and fin efficiency. With high thermal conductivity thick fins can increase cooling efficiency. For thicker fins, a significant impact of the end Biot on fin efficiency is observed.
REFERENCES (46)
1.
Bergles A.E. (1998): Techniques To Enhance Heat Transfer.– in Handbook of Heat Transfer, I., Eds., McGraw-Hill, New York.
 
2.
Bergles A.E. and Manglik R.M. (2013): Current progress and new development in enhanced heat and mass transfer.– Journal of Enhanced Heat Transfer, vol.20, pp.1-15, DOI:10.1615/JEnhHeatTransf.2013006989.
 
3.
Maji A. and Choubey G. (2020): Improvement of heat transfer through fins: A brief review of recent developments.– Heat Transfer, vol.49, No.3, pp.1658-1685, https://doi.org/10.1002/htj.21....
 
4.
Nagarani N., Mayilsamy K., Murugesan A. and Kumar G.S. (2014): Review of utilization of extended surfaces in heat transfer problems.– Renewable and Sustainable Energy Reviews, vol.29, pp.604-613, https://doi.org /10.1016 /j.rser.2013.08.068.
 
5.
Tiari S., Hockins A. and Mahdavi M. (2021): Numerical study of a latent heat thermal energy storage system enhanced by varying fin configurations.– Case Studies in Thermal Engineering, vol.25, p.100999. https:// doi.org/10.1061/j.csite.2021.100999.
 
6.
Zhang S., Mancin S. and Pu L. (2023): A review and prospective of fin design to improve heat transfer performance of latent thermal energy storage.– Journal of Energy Storage, vol.62, p.106825, https://doi.org/10.1016 /j.est.2023.106825.
 
7.
Yovanovich M.M., Culham J.R. and Lemczyk T.F. (1988): Simplified solutions to circular annular fins with contact resistance and end cooling.– Journal of Thermophysics and Heat Transfer, vol.2, No.2, pp.152-157, https://doi.org /10.2514/3.79.
 
8.
Gardner K.A. (1945): Efficiency of extended surface.– Transactions of The American Society of Mechanical Engineers, vol.67, No.8, pp.621-628, https://doi.org/10.1115/1.4018....
 
9.
Harper D.R. and Brown W.B. (1922): Mathematical equations for heat conduction in the fins of air-cooled engines.– National Advisory Committee For Aeronautics. No.158, report. https://ntrs.nasa.gov/citation....
 
10.
Kraus A.D., Aziz A. and Welty J. (2001): Extended Surface Heat Transfer. Wiley, NewYork, https://doi.org /10.1115/1.1399680.
 
11.
Ozisik M.N (1993): Heat Conduction.– second ed. John Wiley and Sons, New York.
 
12.
Campo A., Acosta-Iborra A. and Masip-Macía Y. (2020): Approximate analytical treatment of annular fins of rectangular profile for teaching fin heat transfer: Utilization of the mean value theorem for integrals.– International Journal of Mechanical Engineering Education, vol.48(1), pp.79-96, https://doi.org/10.1177 /0306419018789336.
 
13.
Nellis G. and Klein S. (2008): Heat Transfer.– Cambridge University Press.
 
14.
Lau W. and Tan C.W. (1973): Errors in one-dimensional heat transfer analysis in straight and annular fins.– Journal of Heat Transfer, vol.95, p.549, https://doi.org/10.1115/1.3450....
 
15.
Heggs P.J. and Stones P.R. (1980): The effects of dimensions on the heat flow rate through extended surfaces.– Journal of Heat Transfer, vol.101, p.180, https://doi.org/10.1115/1.3244....
 
16.
Snider A.D. and Kraus A.D. (1983): Recent developments in the analysis and design of extended surface.– Journal of Heat Transfer, vol.105, p.302, https://doi.org/10.1115/1.3245....
 
17.
Razelos P. and Georgiou E. (1992): Two dimensional effects and design criteria for convective extended surfaces.– Heat Transfer Engineering, vol.13, No.3, p.38, https://doi.org/10.1080/014576....
 
18.
Apparecido J.B and Cotta R.M. (1990): Improved one-dimensional fin solution.– Heat Transfer Engineering, pp.11-49, https://doi.org/10.1080/014576....
 
19.
Ju Y.H, Chou Y.S and Hsiao C.C. (1989): A new approach to the transient conduction in a 2D rectangular fin.– International Journal of Heat and Mass Transfer, vol.32, p.1657, https://doi.org/10.1016/0017-9....
 
20.
Cotta R.M and Ramos R. (1998): Integral transforms in the two-dimensional non-linear formulation of longitudinal fins with variable profile.– International Journal of Methods for Heat and Fluid Flow, vol.8, p.27, https:// doi.org/10.1108/09615539810197916.
 
21.
Bouaziz N. (2009): Fin efficiency in 2D with convection at the tip and dissymmetry of exchange.– Energy Conversion and Management, vol.50, No.6, pp.1618-1624, https://doi.org/10.1016/j.enco....
 
22.
Pires-Fonseca W.D. and Carrasco-Altemani C.A. (2024): Experimental and numerical investigation of flat plate fins and inline strip fins heat sinks.– Revista Facultad de Ingeniería Universidad de Antioquia, vol.110, pp.86-98, https: //www.doi.org/10.17533/udea.redin.20230417.
 
23.
Asgari M., Javidan M., Nozari M., Asgari A. and Ganji D.D. (2021): Simulation of solidification process of phase change materials in a heat exchanger using branch-shaped fins.– Case Studies in Thermal Engineering, vol.25, https://doi.org/10.1016/j.csit....
 
24.
Petrik M., Szepesi G. and Jarmai K. (2019): CFD analysis and heat transfer characteristics of finned tube heat exchangers.– Pollack Periodica, vol.14, No.3, pp.165-176, https://doi.org/10.1556/606.20....
 
25.
Fayz-Al-Asad M., Sarker M.M.A. and Munshi M.J.H. (2019): Numerical investigation of natural convection flow in a hexagonal enclosure having vertical fin.– Journal of Scientific Research, vol.11, No.2, pp.173-183, https://doi.org/10.3329/jsr.v1....
 
26.
Konar D., Sultan M.A. and Roy S. (2020): Numerical analysis of 2-D laminar natural convection heat transfer from solid horizontal cylinders with longitudinal fins.– International Journal of Thermal Sciences, vol.154, p.106391, https://doi.org/10.1016/j.ijth....
 
27.
Fourar I., Benmachiche A.H. and Abboudi S. (2021): Effect of material and geometric parameters on natural convection heat transfer over an eccentric annular-finned tube.– International Journal of Ambient Energy, vol.42, No.8, pp.929-939, https://doi.org/10.1080/014307....
 
28.
Lee J. H., Shin J.H., Chang S.M. and Min T. (2020): Numerical analysis on natural convection heat transfer in a single circular fin-tube heat exchanger (Part1), numerical method.– Entropy, vol.22, No.3, p.363, https://doi.org /10.3390 /e22030363.
 
29.
Gong J.H., Wang J., Lund P.D., Zhao D.D., Xu J. W. and Jin Y.H. (2021): Comparative study of heat transfer enhancement using different fins in semi-circular absorber tube for large-aperture trough solar concentrator.– Renewable Energy, vol.169, pp.1229-1241, http://dx.doi.org/10.1016/j.re....
 
30.
Durgam S., Kale A., Kene N., Khedkar A., Palve S. and Gawai N.M. (2021): Thermal analysis of fin materials for engine cylinder heat transfer enhancement.– In IOP Conference Series: Materials Science and Engineering, vol.1126, No.1, p.012071, http://dx.doi.org/10.1088/1757....
 
31.
Sobamowo G. (2020): Finite element thermal analysis of a moving porous fin with temperature-variant thermal conductivity and internal heat generation.– Reports in Mechanical Engineering, vol.1, No.1, pp.110-127, http://dx.doi.org /10.31181/rme200101110s.
 
32.
Senthilkumar P., Babu S.R., Koodalingam B. and Dharmaprabhakaran T. (2020): Design and thermal analysis on circular fin.– Materials Today: Proceedings, vol.33, pp.2901-2906, http://dx.doi.org/10.1016/j.ma....
 
33.
Chitra J., Ananthaswamy V., Sivasankari S. and Sivasaundaram S. (2023): A new approximate analytical method (ASM) for solving non-linear boundary value problem in heat transfer through porous fin.– Mathematics in Engineering, Science and Aerospace, vol.14, No.1, pp.53-69, https://nonlinearstudies.com/i... article/view/3058.
 
34.
Gireesha B. J. and Sowmya G. (2020): Heat transfer analysis of an inclined porous fin using differential transform method.– International Journal of Ambient Energy, vol.43, No.1, pp.3189-3195, http://dx.doi.org/10.1080/ 01430750.2020.1818619.
 
35.
Hoseinzadeh S., Moafi A., Shirkhani A. and Chamkha A.J. (2019): Numerical validation heat transfer of rectangular cross-section porous fins.– Journal of Thermophysics and Heat Transfer, vol.33, No.3, pp.698-704, http://dx.doi.org /10.2514/1.T5583.
 
36.
Sowmya G., Gireesha B.J., Khan M.I., Momani S. and Hayat T. (2020): Thermal investigation of fully wet longitudinal porous fin of functionally graded material.– International Journal of Numerical Methods for Heat and Fluid Flow, vol.30, No.12, pp.5087-5101, http://dx.doi.org/10.1108/HFF-....
 
37.
Kundu B. and Yook S. J. (2021): An accurate approach for thermal analysis of porous longitudinal, spine and radial fins with all nonlinearity effects-analytical and unified assessment.– Applied Mathematics and Computation, vol.402, p.126124, http://dx.doi.org/10.1016/j.am....
 
38.
Look Jr D.C. (1988): Two-dimensional fin performance: Bi (top surface) ≥ Bi (bottom surface).– Journal of Heat Transfer (Transactions of The American Society of Mechanical Engineers, series C), USA, vol.110, No.3, pp.780-782, https://doi.org/10.1115/1.3250....
 
39.
Look Jr D.C. (1989): Two-dimensional fin with non-constant root temperature.– International Journal of Heat and Mass Transfer, vol.32, No.5, pp.977-980, https://doi.org/10.1016/0017-9....
 
40.
Look Jr D.C. and Kang H.S. (1991): Effects of variation in root temperature on heat lost from a thermally non-symmetric fin.– International Journal of Heat and Mass Transfer, vol.34, No.4-5, pp.1059-1065, https://doi.org/10.1016/0017-9....
 
41.
Look Jr D.C. and Kang H.S. (1992): Optimization of a thermally non-symmetric fin-Preliminary evaluation.– International Journal of Heat and Mass Transfer, vol.35, No.8, pp.2057-2060, https://doi.org/10.1016/0017-9....
 
42.
Kang H.S. and Look Jr D.C. (2001): Thermally asymmetric triangular fin analysis.– Journal of Thermophysics and Heat Transfer, vol.15, No.4, pp.427-430, https://doi.org/10.2514/2.6646.
 
43.
Kang H.S. and Look Jr D.C. (2004): Thermally asymmetric annular rectangular fin optimization.– Journal of Thermophysics and Heat Transfer, vol.18, No.3, pp.406-409, https://doi.org/10.2514/1.4951.
 
44.
Kang H.S. and Look Jr D.C. (2007): Optimization of a thermally asymmetric convective and radiating annular fin.– Heat Transfer Engineering, vol.28, No.4, pp.310-320, https://doi.org/10.1080/014576....
 
45.
Cheng C.Y. (1998): Transient response of annular fins subjected to constant base temperatures.– International Communications in Heat and Mass Transfer,– vol.25, No.6, pp.775-785, https://doi.org/10.1016/S0735-....
 
46.
Mustafa M.T., Zubair S.M. and Arif A.F.M. (2011): Thermal analysis of orthotropic annular fins with contact resistance: A closed-form analytical solution.– Applied Thermal Engineering, vol.31, No.5, pp.937-945, https://doi.org /10.1016/j.applthermaleng.2010.11.017.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top