ORIGINAL PAPER
A Study of MHD Fluid with Second Order Slip and Thermal Flow Over a Nonlinear Stretching Sheet
 
More details
Hide details
1
Department of Mathematics, Jaipur National University, Agra Bypass, Near New RTO Office Jagatpura, 302017, Jaipur, India
 
2
Department of Mathematics, Amity University Rajasthan, NH-11 C Kant Kalwar, Delhi-Jaipur Highway, Near Achrol Village, Jaipur, India
 
 
Online publication date: 2022-06-14
 
 
Publication date: 2022-06-01
 
 
International Journal of Applied Mechanics and Engineering 2022;27(2):98-114
 
KEYWORDS
ABSTRACT
An electrically conducted viscous incompressible nanofluid flow caused by the nonlinear stretching surface with stagnation flow has been investigated numerically. The effect of Brownian motion and thermophoresis on the nanofluid is also incorporated. The governing partial differential equations with nonlinear second order boundary conditions are solved by the fourth order Runge-Kutta technique using MATLAB programming. The effect of the radiation parameter (Rd), stretching parameter (n), Brownian motion parameter (Nb), thermophoresis parameter (Nt) on temperature, velocity and mass transfer are shown graphically. The influence of some of these parameters on the local Nusselt number (− θ′(0)) and local Sherwood number (−ϕ′(0)) are shown by the graphs.
 
REFERENCES (23)
1.
Ahmed N., Patel G.S. and Siddappa B. (1990): Visco-elastic boundary layer flow past a stretching plate and heat transfer.– Journal of Applied Mathematics and Physics, vol.41, pp.294-298.
 
2.
Ahmed N. and Khan, N. (2000): Boundary layer flow past a stretching plate with suction and heat transfer with variable conductivity.– IJEMS, vol.7, No.1, pp.51-53.
 
3.
Anderson H.I. (1992): MHD flow of a viscoelastic fluid past a stretching surface.– Acta Mechanica, vol.95, pp.227-230.
 
4.
Bentwhich M. (1978): Semi-Bounded Slow Viscous Flow Past a Cylinder. Quarterly Journal of Mechanics and Applied Mathematics, vol.31(4), pp.445-459. https://doi.org/10.1093/qjmam/....
 
5.
Chen C.K. and Char M.I. (1988): Heat transfer of a continuous, stretching surface with suction or blowing.– Journal of Mathematical Analysis and Application, vol.135, No.2, pp.568-580, https://doi.org/10.1016/0022-2....
 
6.
Choi S.U.S, Zhang Z.G, Yu W. and Lockwood F.E. (2001): Anomalously thermal conductivity enhancement in nanotube suspensions.– Appl. Phys. Lett., vol.79, pp.2252-2254, https://doi.org/10.1063/1.1408....
 
7.
Cortel R. (2007): Viscous flow and heat transfer over a nonlinearly stretching sheet.– Appl. Math Comput., vol.184, No.2, pp.864-873, https://doi.org/10.1016/j.amc.....
 
8.
Crane L.J. (1970): Flow past a stretching plate.– J. Appl. Math. Phys. (ZAMP), vol.21, pp.645-647.
 
9.
Fang T. and Yao S. Zang J. and Aziz A. (2009): Slip MHD viscous flow over a stretching-sheet an exact solution.– Commun. Nonlinear Sci. Numer. Simul., vol.14, pp.3731-3737, https://doi.org/10.1016/j.cnsn....
 
10.
Hayat T, Khan WA, Abbas S.Z, and Nadeem S (2020): Impact of induced magnetic field on second-grade nanofluid flow past a convectively heated stretching sheet.– Applied Nanoscience, vol.10, pp.3001-3009.
 
11.
Hsiao K.-L. (2010): Heat and mass mixed convection for MHD viscoelastic fluid past a stretching sheet with ohmic dissipation.– Commun. Nonlinear Sci. Numer. Simul., vol.15, pp.1803-1812, http://dx.doi.org/10.1016/j.cn....
 
12.
Kalidas Das. (2014): Nanofluid flow over a non-linear permeable stretching sheet with partial slip.– Journal of the Egyptian Mathematical Society, vol.23, No.2, pp.451-456, https://doi.org/10.1016/j.joem....
 
13.
Kang H.U., Kim S.H. and Oh J.M. (2006): Estimation of thermal conductivity of nanofluid using experimental effective particle volume.– Exp. Heat Transfer, vol.19, pp.181-191, https://doi.org/10.1080/089161....
 
14.
Mahantesh M. Nandeppanavar Abel M.S. and Siddalinappa M.N. (2012): Second order slip flow and heat transfer over a stretching sheet with non-linear Navier boundary condition.– International Journal of Thermal Sciences, vol.58, pp.143-150, https://doi.org/10.1016/j.ijth....
 
15.
Nagendramma V. (2017): Thermo diffusion effects on MHD boundary layer slip flow on nanofluid over a nonlinear stretching sheet through a porous medium.– Journal of Porous Media, vol.20, No.11, pp.961-970.
 
16.
Rosca A.V. and Pop I (2013): Flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second order slip.– International Journal of Heat and Mass Transfer, vol.60, pp.355-364, https://doi.org/10.1016/j.ijhe....
 
17.
Sakiadas B.C. (1961): Boundary layer equation for two dimensional and axisymmetric flow.– Journal of American Institute of Chemical Engineers (AIChE), vol.7, pp.26-28, https://doi.org/10.1155/2013/7....
 
18.
Seth G.S. (2019): Analysis of electromagnetohydrodynamic stagnation point flow of nanofluid over a nonlinear stretching sheet with variable thickness.– Journal of Mechanics, vol.35, No.5, pp.719-733, https://doi.org/10.1017/jmech.....
 
19.
Shen M., Wang F., Chen H. (2015): MHD mixed convection slip flow near a stagnation-point on a nonlinearly vertical stretching sheet.– Boundary Value Problems. vol.78, Article Number 2015.78, p.15, DOI 10.1186/s13661-015-0340-6.
 
20.
Siddappa B. and Abel S. (1985): Non-newtonian flow past a stretching plate.– Journal of Applied Mathematics and Physics, vol.36, pp.1-3.
 
21.
Subhas A. and Veena P. (1998): Visco-elastic fluid flow and heat transfer in a porous medium over a stretching sheet.– Int. J. Heat and Mass Transfer, vol.33, No.3, pp.531-540.
 
22.
Khan W.A. and Pop I. (2010).: Boundary-layer flow of a nanofluid past a stretching sheet.– Int. J. Heat Mass Transfer, vol.53, pp.2477-2483, https://doi.org/10.1016/j.ijhe....
 
23.
Wang C.Y. (1984): The three-dimensional flow due to a stretching flat surface.– Phys. Fluids, vol.27, pp.1915-1917, https://doi.org/10.1063/1.8648....
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top