ORIGINAL PAPER
A Study on Fractional Order Thermoelastic Half Space
,
 
 
 
More details
Hide details
1
Department of Mathematics, Jadavpur University, Kolkata-, 700032, India
 
 
Online publication date: 2020-11-26
 
 
Publication date: 2020-12-01
 
 
International Journal of Applied Mechanics and Engineering 2020;25(4):191-202
 
KEYWORDS
ABSTRACT
In this paper, we consider a one dimensional problem on a fractional order generalized thermoelasticity in half space subjected to an instantaneous heat source. The Laplace transform as well as eigen value approach techniques are applied to solve the governing equations of motion and heat conduction. Closed form solutions for displacement, temperature and stress are obtained and presented graphically.
 
REFERENCES (17)
1.
Abbas I.A. and Hobiny A. (2019): Fractional order GN model on photo-thermal interaction in a semiconductor plane. – Silicon; pp.1-8; https://doi.org/10.1007/s12633....
 
2.
Bellman R., Kalaba R.E. and Jo Ann. (1966): Locktt,-New York. – Amer. Elsevier Pub.Com.
 
3.
Biot M.A. (1956): Thermoelasticity and irreversible thermodynamics. – Jour. Appl.
 
4.
Dhaliwal R.S. and Sherief H.H. (1980): Generalized thermoelasticity for anisotropic media. – Quart. Appl. Math., vol.33, pp.1-8.
 
5.
Green A.E. and Lindsay K.A. (1972): Thermoelasticity. – Journal of Elasticity, vol.2, pp.1-7.
 
6.
Green A.E. and Naghdi P.M. (1991): A re-examination of the basic postulates of thermomechanics. – Proc. Roy. Soc. London Ser. A., vol.432, pp.171-194.
 
7.
Green A.E. and Naghdi P.M. (1992): On undamped heat waves in an elastic solid. – Journal of Thermal Stresses, vol.15, pp.253-264.
 
8.
Green A.E. and Naghdi P.M. (1993): Thermoelasticity without energy dissipation. – J. Elasticity, vol.31, pp.189-208.
 
9.
Kimmich R. (2002): Strange kinetics, porous media and NMR. – Chem Phys., vol.284, pp.243-285.
 
10.
Kar T.K and Lahiri A. (2000): Eigen value approach to generalized thermoelasticity in an isotropic medium with an instantaneous heat sources. – Int. J. Appl. Mech. Eng., vol.9, No.1, pp.147-160.
 
11.
Lahiri A., Das N.C., Sarkar S. and Das M. (2009): Matrix method solution of coupled differential equations and its application in general thermoelasticity. – Bull Cal Math Soc., vol.100, pp.571-590.
 
12.
Lord H.W. and Shulman Y. (1967): A generalized dynamical theory of thermoelasticity. – J. Mech. Phys. Solids, vol.15, pp.299-309.
 
13.
Povstenko Y.Z. (2004): Fractional heat conduction and associated thermal stresses. – J. Therm. Stresses, vol.28, pp.83-102.
 
14.
Povstenko Y.Z. (2011): Fractional Catteneo-type equations and generalized thermoelasticity. – J. Therm. Stresses, vol.34, pp.94-114.
 
15.
Youssef H.M. (2006): Two dimensional generalized thermoelasticity problem for a half space subjected to ramp-type heating. – Eur J. Mech, vol.25, pp.745.
 
16.
Youssef H.M. (2010): Theory of fractional order generalized thermoelasticity. – J. Heat Transfer, vol.132, pp.1-7.
 
17.
Youssef H.M. and Al-Lehaibi E.A. (2010): Fractional order generalized thermoelastic infinite medium with cylindrical cavity subjected to harmonically varying heat. – Sci. Res., vol.3, pp.32-37.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top