ORIGINAL PAPER
An overview of heat sink technology
More details
Hide details
1
Mechanical Power Technical Eng., Northern Technical University
Technical Engineering College/ Kirkuk, Iraq
Submission date: 2024-02-15
Final revision date: 2024-07-16
Acceptance date: 2024-08-07
Online publication date: 2024-12-12
Publication date: 2024-12-12
Corresponding author
Ehsan Fadhil Abbas
Mechanical Power Technical Eng., Northern Technical University
Technical Engineering College/ Kirkuk, Iraq
International Journal of Applied Mechanics and Engineering 2024;29(4):1-23
KEYWORDS
TOPICS
ABSTRACT
A heat sink is a device that helps absorb or dissipate heat from the surrounding area using extended surfaces or fins in various geometries. This technology finds its applications in various thermal applications, including power plants, refrigeration, air conditioning systems, electric and electronic devices, and chemical industries. The most common type of heat sink is a metal device with many cooling fins, known as a fin array. There are two methods used to cool heat sinks: passive and active. Increasing the surface area of the fins' thermal conductivity, or heat transfer coefficient, can enhance the performance of the heat sink. There are various profiles for longitudinal fins, including parabolic, triangular, and rectangular shapes. The most popular profile is the rectangular one, particularly in arrays with multiple fins. The purpose of this study is to review the optimization design of longitudinal rectangular fins for arrays with one or more fins subjected to both natural and forced convection.
REFERENCES (48)
2.
Lee S. (1995): Optimum design and selection of heat sinks.– IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, vol.18, No.4, pp. 812-817, doi: 10.1109/95.477468.
3.
Londhe K. and Kaushik V.R. (2017): Heat sink design for optimal performance of compact electronic appliances - a review.– Journal for Advanced Research in Applied Sciences, vol.4, No.5, pp.13-21.
4.
Kandasamy R., Wang X.Q. and Mujumdar A.S. (2008): Transient cooling of electronics using phase change material (PCM)-based heat sinks.– Appl. Therm. Eng., vol.28, No.8-9, pp.1047-1057, doi: 10.1016/J.APPLTHERMALENG.2007.06.010.
5.
Kays W.M. and London A.L. (2011): Compact Heat Exchangers.– Third Edition,.
7.
Lee H.S. (2010): Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells.– John Wiley & Sons, Inc., doi: 10.1002/9780470949979.
8.
Holman J.P. (2010): Heat Transfer.– 10th ed., p.758, McGraw-Hill Education.
9.
Kraus A.D., Aziz A. and Welty J. (2001): Extended Surface Heat Transfer.– A Wiley-Interscience Publication J.WILEY & SONS, Inc., doi: 10.1002/9780470172582.
10.
Cengel Y., Turner R. and Smith R. (2001): Fundamentals of thermal-fluid sciences.– Appl. Mech. Rev., vol.54, No.6, doi: 10.1115/1.1421126.
11.
Brown A. (1965): Optimum dimensions of uniform annular fins.– Int. J. Heat Mass Transf., vol.8, No.4, pp.655-662, doi: 10.1016/0017-9310(65)90051-7.
12.
Cobble M.H. (1971): Optimum fin shape.– J. Franklin Inst., vol.291, No.4, pp.283-292, doi: 10.1016/0016-0032(71)90184-0.
13.
Snider A.D. and Kraus A.D. (1987): The quest for the optimum longitudinal fin profile.– Heat Transfer Engineering, vol.8, No.2, doi: 10.1080/01457638708962790.
14.
Duffin R. (1959): A variational problem relating to cooling fins.– Indiana University Mathematics Journal, vol.8, No.1, doi: 10.1512/iumj.1959.8.58003.
16.
Ernst E.R.G., Eckert R.G. and Drake R.M. (1987): Analysis of heat and mass transfer.– Hemisphere Pub. Corp., accessed: Nov. 21, 2023, [Online], available:
https://inis.iaea.org/search/s....
17.
Razelos P. and Imre K. (1983): Minimum mass convective fins with variable heat transfer coefficients.– J. Franklin Inst., vol.315, No.4, doi: 10.1016/0016-0032(83)90078-9.
18.
Aziz A. (1992): Optimum dimensions of extended surfaces operating in a convective environment.– Appl. Mech. Rev., vol.45, No.5, doi: 10.1115/1.3119754.
19.
Bergman T.L., Lavine A.S., Incropera F.P. and DeWitt D.P. (2015): Fundamentals of Heat and Mass Transfer.– John Wiley & Sons, USA.
20.
Chung B.T.F. and Iyer J.R. (1993): Optimum design of longitudinal rectangular fins and cylindrical spines with variable heat transfer coefficient.– Heat Transfer Engineering, vol.14, No.1, pp.31-41, doi: 10.1080/01457639308939792.
21.
Schmidt E. (1926): Die Wärmeübertragung Durch Rippen.
22.
Chung B.T.F. and Nguyen L.D. (1986): Optimization of design parameters for radiating longitudinal fins of various geometries.– in AIAA Paper, doi: 10.2514/6.1986-150.
23.
Levy E.K. (1971): Optimum plate spacings for laminar natural convection heat transfer from parallel vertical isothermal flat plates.– J. Heat Transfer, vol.93, No.4, pp.463-465, doi: 10.1115/1.3449847.
24.
Elenbaas W. (1942): Heat dissipation of parallel plates by free convection.– Physica, vol.9, No.1, pp.1-28, doi: 10.1016/S0031-8914(42)90053-3.
25.
Bodoia J.R. and Osterle J.F. (1962): The development of free convection between heated vertical plates.– J. Heat Transfer, vol.84, No.1, pp.40-43, doi: 10.1115/1.3684288.
26.
Bar-Cohen A. and Jelinek M. (1985): Optimum arrays of longitudinal, rectangular fins in corrective heat transfer.– Heat Transfer Engineering, vol.6, No.3, pp.68-78, doi: 10.1080/01457638508939633.
27.
Starner K.E. and McManus H.N. (1963): An experimental investigation of free-convection heat transfer from rectangular-fin arrays.– J. Heat Transfer, vol.85, No.3, pp.273-277, doi: 10.1115/1.3686097.
28.
Jones C.D. and Smith L.F. (1970): Optimum arrangement of rectangular fins on horizontal surfaces for free-convection heat transfer.– J. Heat Transfer, vol.92, No.1, doi: 10.1115/1.3449648.
29.
Barrett A.V. and Obinelo I.F. (1997): Characterization of longitudinal fin heat sink thermal performance and flow bypass effects through CFD methods.– in Annual IEEE Semiconductor Thermal Measurement and Management Symposium, doi: 10.1109/stherm.1997.566793.
30.
De Lieto Vollaro A., Grignaffini S. and Gugliermetti F. (1999): Optimum design of vertical rectangular fin arrays.– International Journal of Thermal Sciences, vol.38, No.6, pp. 525-529, doi: 10.1016/S1290-0729(99)80025-8.
31.
Baskaya S., Sivrioglu M. and Ozek M. (2000): Parametric study of natural convection heat transfer from horizontal rectangular fin arrays.– International Journal of Thermal Sciences, vol.39, No.8, pp.797-805, doi: 10.1016/S1290-0729(00)00271-4.
32.
Bar-Cohen A., Iyengar M. and Kraus A.D. (2003): Design of optimum plate-fin natural convective heat sinks.– Journal of Electronic Packaging, Transactions of the ASME, vol.125, No.2, pp.208-216, SPEC., doi: 10.1115/1.1568361.
33.
Yazicioǧlu B. and Yüncü H. (2007): Optimum fin spacing of rectangular fins on a vertical base in free convection heat transfer.– Heat and Mass Transfer/Waerme- und Stoffuebertragung, vol.44, No.1, pp.11-21, doi: 10.1007/s00231-006-0207-6.
34.
Mittelman G., Dayan A., Dado-Turjeman K. and Ullmann A. (2007): Laminar free convection underneath a downward facing inclined hot fin array.– Int. J. Heat Mass Transf., vol.50, No.13-14, pp.2582-2589, doi: 10.1016/j.ijheatmasstransfer.2006.11.033.
35.
Shaeri M.R. and Yaghoubi M. (2009): Thermal enhancement from heat sinks by using perforated fins.– Energy Convers. Manag., vol.50, No.5, pp.1264-1270, doi: 10.1016/j.enconman.2009.01.021.
36.
Kim D.K. (2012): Thermal optimization of plate-fin heat sinks with fins of variable thickness under natural convection.– Int. J. Heat Mass Transf., vol.55, No.4, pp.752-761, doi: 10.1016/j.ijheatmasstransfer.2011.10.034.
37.
Ahmadi M., Mostafavi G. and Bahrami M. (2014): Natural convection from rectangular interrupted fins.– International Journal of Thermal Sciences, vol.82, No.1, pp.62-71, doi: 10.1016/j.ijthermalsci.2014.03.016.
38.
Pouryoussefi S. and Zhang Y. (2015): Experimental study of air-cooled parallel plate fin heat sinks with and without circular pin fins between the plate fins.– Journal of Applied Fluid Mechanics, vol.8, No.3, pp.515-520, doi: 10.18869/acadpub.jafm.67.222.22930.
39.
Karamanis G. and Hodes M. (2016): Longitudinal-fin heat sink optimization capturing conjugate effects under fully developed conditions.– J. Therm. Sci. Eng. Appl., vol.8, No.4, p.7, doi: 10.1115/1.4034339.
40.
Shadlaghani A., Tavakoli M.R., Farzaneh M. and Salimpour M.R. (2016): Optimization of triangular fins with/without longitudinal perforate for thermal performance enhancement.– Journal of Mechanical Science and Technology, vol.30, No.4, pp.1903-1910, doi: 10.1007/s12206-016-0349-5.
41.
Hong S.H. and Chung B.J. (2016): Variations of the optimal fin spacing according to Prandtl number in natural convection.– International Journal of Thermal Sciences, vol.101, pp.1-8, doi: 10.1016/J.IJTHERMALSCI.2015.10.026.
42.
Dogan M. and Dogan D. (2017): Experimental investigation of natural convection heat transfer from fin arrays for different tip-to-base fin spacing ratios.– Isi Bilimi Ve Teknigi Dergisi/ Journal of Thermal Science and Technology, vol.37, No.1, pp.147-157.
43.
Jaya Krishna D. (2018): Operational time and melt fraction based optimization of a phase change material longitudinal fin heat sink.– J. Therm. Sci. Eng. Appl., vol.10, No.6, p.4, doi: 10.1115/1.4040988.
44.
Hou D., Xin X. and Qian J. (2020): Analysis of natural convection heat transfer from vertical and inclined plate fin heat sinks.– in Lecture Notes in Electrical Engineering, Springer Verlag, pp.479-487, doi: 10.1007/978-981-32-9441-7_49.
45.
Jasim H.H. (2020): Heat transfer enhancement from heat sources using optimal design of combined fins heat-sinks.– Propulsion and Power Research, vol.9, No.4, pp.372-382, doi: 10.1016/j.jppr.2020.11.002.
46.
Xie L., Zhang Y., Ge M. and Zhao Y. (2022): Topology optimization of heat sink based on variable density method.– Energy Reports, vol.8, pp.718-726, doi: 10.1016/J.EGYR.2021.11.214.
47.
Obaid A.J. and Hameed V.M. (2023): An experimental and numerical comparison study on a heat sink thermal performance with new fin configuration under mixed convective conditions.– S. Afr. J. Chem. Eng., vol.44, pp.81-88, doi: 10.1016/J.SAJCE.2023.01.009.
48.
Kaya M. and Kaya Ş. (2023): Optimum fin spacing of rectangular fins on aluminum heat sinks plates.– Proceedings of the Romanian Academy Series A - Mathematics Physics Technical Sciences Information Science, vol.24, No.2, pp.157-157.