ORIGINAL PAPER
An unsteady electro-magnetohydrodynamic two-liquid plasma flow along a channel of insulating porous plates with Hall currents
 
More details
Hide details
1
Dept. of Mathematics, St. Joseph's College for Women (A), Visakhapatnam, Pin code: 530004, A.P., INDIA
 
2
Department of Engineering Mathematics, AUCE(A), Andhra University, Visakhapatnam,Pin code: 530003 A.P., INDIA
 
 
Online publication date: 2023-06-28
 
 
Publication date: 2023-06-28
 
 
International Journal of Applied Mechanics and Engineering 2023;28(2):90-112
 
KEYWORDS
ABSTRACT
It is proposed to use the Hall currents to model the transient magneto-hydrodynamic two liquid flows and heat transfer of ionized gases propelled by a common pressure gradient via a horizontal channel consisting of parallel porous plates. For the distributions of velocity and temperature, the principal partial differential equations that explain heat transfer flow under the chosen constraints are resolved. Graphical representations are given for the distributions of velocity, temperature, and heat transfer rates. This research will be carried out using non-conducting porous plate’s channel.
 
REFERENCES (36)
1.
Hartmann J. (1937): Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field.– Mathematisk-fysiske Meddeleser. Det kgl. Danke Vid. Selskab, vol.15, No.6, pp.1-28.
 
2.
Nigam S.D. and Singh S.N. (1960): Heat transfer by laminar flow between parallel plates under the action of transverse magnetic fields.– Quart. J. Mech. Appl. Math.,vol.13, pp.85-97.
 
3.
Rudraiah N., Kumudini V. and Unno W. (1985): Theory of nonlinear magneto convection and its application to solar convection problem.– I. Publ. Astron. Soc., Japan, vol.37, pp.183-206.
 
4.
Alireza S. and Sahai V. (1990): Heat transfer in developing magnetohydrodynamic Poiseuille flow and variable transport properties.– Int. J. of Heat and Mass Transfer,vol.33, No.8, pp.1711-1720.
 
5.
Attia H.A. and Sayed Ahmed M.E. (2002): A transient Hartmann flow with heat transfer of a non-Newtonian fluid with suction and injection, considering the Hall effect.– J. of Plasma Physics, vol.67, No.1, pp.27-47.
 
6.
Cowling T.G. (1957): Magnetohydrodynamics.– Interscience Publishers, Inc., New York.
 
7.
Sherman A. and Sutton G.W. (1961): Magnetohydrodynamics (Evanston, Illinois).– p.123.
 
8.
Sato H. (1961): The Hall Effect in the viscous flow of ionized gas between parallel plates under transverse magnetic field.– J. Phys. Soc. Japan, vol.16, No.7, pp.1427-1433.
 
9.
Shercliff J.A. (1962): The Theory of Electro-magnetic Flow Measurement.– Cambridge University Press.
 
10.
Raju T.L. and Ramana Rao V.V. (1992): Hall effect in the viscous flow of an ionized gas between two parallel walls under transverse magnetic field in a rotating system.– Acta PhysicaHungarica, vol.72, No.1, pp.23-45.
 
11.
Ram P.C. (1995): Effects of hall and ion-slip currents on free convective heat generating flow in a rotating fluid.– Int. J. Energy Res., vol.19, No.5, pp.371-376.
 
12.
Sakhnovskii E.G. (1963): Effects of anisotropic conductivity in Rayleigh magnetohydrodynamic problems.– Zh. Tekhon. Fsz., vol.33, p.631.
 
13.
Jana R.N. and Datta N. (1977): Hall effects on hydromagnetic flow over an impulsively started porous plate.– Acta Mechanica, vol.28, pp.211-218.
 
14.
Beg O.A., Zueco J. and Takhar H.S. (2009): Communications in nonlinear science and numerical simulation.– vol.14, pp.1082-1097.
 
15.
Rama Bhargava and Meena Rani. (1984): Magneto hydro dynamic flow and heat transfer in a channel with porous walls of different permeability.– Indian J. Pure Appl. Math., vol.15, No.4, pp.397-408.
 
16.
Raju T.L. and Ramana Rao V.V. (1993): Hall effects on temperature distribution in a rotating ionized hydromagnetic flow between parallel walls.– Int. J. Engg. Sci., vol.31, No.7, pp.1073-1091.
 
17.
Ganesh S. and Krishnambal S. (2007): Unsteady magnetohydrodynamic Stokes flow of viscous fluid between two parallel porous plates.– Journal of Applied Sciences, vol.7, No.3, pp.374-379.
 
18.
Ghosh S.K., Beg O.A. and Narahari M. (2009): Hall effects on MHD flow in a rotating system with heat transfer characteristics.– Meccanica, vol.44, No.6, pp.741-765.
 
19.
Gupta A.S., Guria M. and Jana R.N.(2011): Hall effect on the magnetohydrodynamic shear flow past an infinite porous flat plate subjected to uniform suction or blowing.– Int.J.Nonlinear Mechanics, vol.46, No.3, pp.1057-1064.
 
20.
Khaled K.J. (2015) :Influence of hall current and viscous dissipation on MHD convective heat and mass transfer in a rotating porous channel with Joule heating.– American J. Mathematics and Statistics, vol.5, No.5, pp.272-284.
 
21.
Lohrasbi J. and Sahai V. (1988): Magnetohydrodynamic heat transfer in two phase flow between parallel plates.– Appl. Sci. Res., vol.45, pp.53-66.
 
22.
Malashetty M.S. and Leela V. (1991): Proceeding of national heat transfer conference on AICHE and ASME HTD.– p.159.
 
23.
Malashetty M.S. and Leela V. (1992): Magnetohydrodynamic heat transfer in two phase flow.– Int. J. of Engg. Sci., vol.30, pp.371-377.
 
24.
Chamkha A.J. (2004): Unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption.– Int. J. Engg. Sci., vol.42, pp.217-230.
 
25.
Sharma R.C. and Neela Rani. (1986): Finite larmor radius and compressibility effects on thermosolutal instability of a plasma.– Z. Naturforsch., 41a, pp.724-728.
 
26.
Sharma R.C. and Neela Rani. (1988): Hall effects of thermo-solute instability of a plasma.– Indian J. Pure Appl. Math, vol.19, No.2, pp.202-207.
 
27.
StamenkovićZ., NikodijevićD.D., Kocić M. and PetrovićJ.D. (2012): MHD flow and heat transfer of two immiscible fluids with induced magnetic field.– Thermal Science, Int. Sci. Journal, vol.16, No.2, pp.323-S336.
 
28.
Abdul M. (2014): Transient magnetohydrodynamic flow of two immiscible fluids through a horizontal channel.– Int.J.Engg.Res., vol.3, No.1, pp.13-17.
 
29.
Linga Raju T. (2019): MHD heat transfer two-ionized fluids flow between two parallel plates with Hall currents.– Results in Engineering, vol.4, 100043 Elsevier BV,http://doi.org/10.1016/j.rinen....
 
30.
Sivakamini L. and Govindarajan A. (2019): Unsteady MHD flow of two immiscible fluids under chemical reaction in a horizontal channel.– AIP conference proceedings 2112.020157, https://doi.org/10.1063/1.5112....
 
31.
Abd Elmaboud Y., Abdesalam S.I., Mekheimer Kh.S. and Kambiz Vafai. (2019): Electromagnetic flow for two-layer immiscible fluids.–Engineering Science and Technology, an International Journal, vol.22, pp.237-248.
 
32.
Linga Raju T. (2021): Electro-magneto hydrodynamic two fluid flow of ionized-gases with Hall and Rotation effects.– Int. J. Appl. Mech., vol.26, No.4, pp.128-144. DOI: 10.2478/ijame-2021-0054.
 
33.
Linga Raju T. and Gowri Sankara Rao V. (2021): Effect of Hall current on unsteady magnetohydrodynamic two-ionized fluid flow and heat transfer in a channel.– Int. J. of Applied Mechanics and Engg., vol.26, No.2, pp.84-106.
 
34.
Naga Valli M., Linga Raju T. and Kameswaran P.K. (2022): Effect of Hall currents on EMHD 2-layered plasma heat transfer flow via a channel of porous plates.– To appear in Springer Conference Proceedings of 8th International Conference on Mathematics and Computing, (ICMC-2022) held during January6-8, 2022 at VIT, Vellore, India. Manuscript No.208.
 
35.
Linga Raju T. and Venkat Rao B. (2022): Unsteady electro-magneto hydrodynamic flow and heat transfer of two ionized fluids in a rotating system with Hall currents.– Int. J.Appl. Mech., vol.27, No.1. pp.125-145.
 
36.
Spitzer L. Jr. (1956): Physics of Fully Ionized Gases.– Interscience Publishers N. Y.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top