ORIGINAL PAPER
Analysis of Forced Spatial Vibrations of a Centrifugal Pump Impeller with Axial Forces Balancing Device
,
 
 
 
 
More details
Hide details
1
Department of General Mechanics and Machine Dynamics, Sumy State University, 2 Rimsky-Korsakov Str., Sumy 40007, Ukraine
 
2
Faculty of Mechatronics and Machine Design, Kielce University of Technology, Al. 1000-lecia PP 7, 25-314 Kielce, Poland
 
 
Online publication date: 2016-09-10
 
 
Publication date: 2016-08-01
 
 
International Journal of Applied Mechanics and Engineering 2016;21(3):737-750
 
KEYWORDS
ABSTRACT
In this paper, a model of a pump impeller with annular seals and a balancing device, used as a combined support-seal assembly, is considered. The forced coupled radial, angular and axial vibrations of the rotor are determined with consideration of linearized inertial, damping, gyroscopic, positional and circulating forces and moments acting on the impeller from the side of the fluid flow in annular seals. The theoretical analysis is supplemented with a numerical example, the amplitude frequency characteristics are shown.
 
REFERENCES (32)
1.
Childs D.W. (1993): Turbomachinery Rotordynamics Phenomena, Modeling, and Analysis. – John Wiley and Sons, Inc.
 
2.
Childs D.W. (1993). Turbomachinery Rotordynamics Phenomena, Modeling, and Analysis. John Wiley and Sons, Inc.
 
3.
San Andres L. (1993): Dynamic force and moment coefficients for short length annular seals. – ASME Journal of Tribology, vol.115, No.1, pp.61-70.
 
4.
San Andres L. (1993). Dynamic force and moment coefficients for short length annular seals ASME Journal of Tribology. 115 (1): 61-70.
 
5.
Gosiewski Z. (2008): Analysis of coupling mechanism in lateral/torsional rotor vibrations. – Journal of Theoretical and Applied Mechanics, vol.46, No.4, pp.829-844.
 
6.
Gosiewski Z. (2008). Analysis of coupling mechanism in lateral/torsional rotor vibrations Journal of Theoretical and Applied Mechanics. 46 (4): 829-844.
 
7.
Cheng M., Meng G. and Jing J. (2006): Non-linear dynamics of rotor-bearing-seal system. – Archive of Applied Mechanics, vol.76, pp. 215-227.
 
8.
Cheng M., Meng G., Jing J. (2006). Non-linear dynamics of rotor-bearing-seal system Archive of Applied Mechanics. 76: 215-227.
 
9.
Li W., Yang Y., Sheng D. and Chen J. (2011): A novel nonlinear model of rotor/bearing/seal system and numerical analysis. – Mechanism and Machine Theory, No.46, pp.618–631.
 
10.
Li W., Yang Y., Sheng D., Chen J. (2011). A novel nonlinear model of rotor/bearing/seal system and numerical analysis Mechanism and Machine Theory. (46): 618-631.
 
11.
Faria M.T.C. and Miranda W.M. (2012): Pressure dam influence on the performance of gas face seals. – Tribology International, No.47, pp.134–141.
 
12.
Faria M.T.C., Miranda W.M. (2012). Pressure dam influence on the performance of gas face seals Tribology International. (47): 134-141.
 
13.
Muszynska A. and Bently D.E. (1990): Frequency-swept rotating input perturbation techniques and identification of the fluid force models in rotor/bearing/seal systems and fluid handling machines. – Journal of Sound and Vibration, vol.143, No.1, pp.103–124.
 
14.
Muszynska A., Bently D.E. (1990). Frequency-swept rotating input perturbation techniques and identification of the fluid force models in rotor/bearing/seal systems and fluid handling machines Journal of Sound and Vibration. 143 (1): 103-124.
 
15.
Kundera C. and Martsinkovsky V.A. (2014): Static and dynamic analysis of a pump impeller with a balancing device. Part I: Static analysis. – Int. J. of Applied Mechanics and Engineering, vol.19, No.3, pp.609-619.
 
16.
Kundera C., Martsinkovsky V.A. (2014). Static and dynamic analysis of a pump impeller with a balancing device. Part I: Static analysis Int. J. of Applied Mechanics and Engineering. 19 (3): 609-619.
 
17.
Martsinkovsky V.A., Zhulyov A. and Kundera C. (2014): Static and dynamic analysis of a pump impeller with a balancing device. Part II: Dynamic analysis. – Int. J. of Applied Mechanics and Engineering, vol.19, No.3, pp.621-631.
 
18.
Martsinkovsky V.A., Zhulyov A., Kundera C. (2014). Static and dynamic analysis of a pump impeller with a balancing device. Part II: Dynamic analysis Int. J. of Applied Mechanics and Engineering. 19 (3): 621-631.
 
19.
Martsinkovsky V.A. (2012): Rotordynamics of centrifugal machines (in Russian). – Editorial of the Sumy State University, Sumy.
 
20.
Martsinkovsky V.A. (2012). Rotordynamics of centrifugal machines. Editorial of the Sumy State University, Sumy. (in Russian).
 
21.
Marcinkowski W.A. and Kundera C. (2008): Design theory of noncontacting seals (in Polish). – Editorial of the Kielce University of Technology, Kielce.
 
22.
Marcinkowski W.A., Kundera C. (2008). Design theory of noncontacting seals. Editorial of the Kielce University of Technology, Kielce. (in Polish).
 
23.
Korczak A. (2005): Investigations of systems counterbalancing the axial thrust in multi-stage centrifugal pumps (in Polish). – Scientific Book of the Silesian University of Technology, No.1679, Gliwice.
 
24.
Korczak A. (2005). Investigations of systems counterbalancing the axial thrust in multi-stage centrifugal pumps. Scientific Book of the Silesian University of Technology, Gliwice. No.1679,.
 
25.
Jędral W. (2001): Centrifugal Pumps (in Polish). – PWN: Warsaw.
 
26.
Jędral W. (2001). Centrifugal Pumps. PWN, Warsaw. (in Polish).
 
27.
Martsinkovsky V.A., Demin S.I., Gulyj A.N. and Bachkina A.A. (1995): Centrifugal pump. – Patent SU1771248.
 
28.
Martsinkovsky V.A., Demin S.I., Gulyj A.N., Bachkina A.A. (1995). Centrifugal pump. Patent SU1771248.
 
29.
Kubota Y. (1999): Thrust-balancing device. – Patent EP0952352A2.
 
30.
Kubota Y. (1999). Thrust-balancing device. Patent EP0952352A2.
 
31.
Chiba Y., Ishikawa Ch., Katsura H. and Abe D. (2007): Single-shaft multistage pump. – Patent US7198457B2.
 
32.
Chiba Y., Ishikawa Ch., Katsura H., Abe D. (2007). Single-shaft multistage pump. Patent US7198457B2.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top