ORIGINAL PAPER
Analysis of factors affecting destabilization of a viscous liquid flow in channels
More details
Hide details
1
Department of Applied Hydroaeromechanics and Mechanotronics,
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv
2
Institute of Civil Engineering and Building Systems, Lviv Polytechnic National University, Lviv
3
Department of Applied Hydroaeromechanics and Mechanotronics, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv
Online publication date: 2023-09-29
Publication date: 2023-09-29
International Journal of Applied Mechanics and Engineering 2023;28(3):86-100
KEYWORDS
ABSTRACT
An analysis of the influence of inertia forces and ponderomotive forces on the destabilization of the flow of viscous fluids in the hydrodynamic initial section is given. Cases of flow of viscous, anomalously viscous and electrically conductive liquids are considered; the degree of influence of mass forces on the destabilization of the flow is estimated. As applied to the flow in the hydrodynamic initial section, the degree of influence of inertia forces from convective acceleration and forces with a magnetic nature can be different. Inertia forces stimulate the accelerated movement of the fluid, and in the case of forces with a magnetic nature, ponderomotive forces contribute to deceleration, which is confirmed by the results of studies of the velocity field. Recommendations are given for calculating the length of the hydrodynamic initial section in the presence of mass forces with different nature.
REFERENCES (21)
1.
Povh I.L., Kapusta А.B. and Chenin B. (1974): Magnetic Hydrodynamics.– М., Metallurgiya, p.238.
2.
Pai Shi I. (1964): Magnetic Hydrodynamics and Plasma Dynamics.– М., Мir, p.302 p.
3.
Rissel M. and Wang Ya-Guang (2021): Global exact controllability of ideal incompressible magnetohydrodynamic flows through a planar duct.– ESAIM Control Optim. Calc. Var., vol.27, No.103, p.24.
4.
Falsaperla P., Mulone G. and Perrone C. (2022): Nonlinear energy stability of magnetohydrodynamics Couette and Hartmann shear flows: A contradiction and a conjecture.– Int. J. Non-Linear Mech. vol.138, p.103835.
5.
Falsaperla P., Mulone G. and Perrone C. (2022): Stability of Hartmann shear flows in an open inclined channel.– Nonlinear Anal. Real World Appl., vol.64, p.103446.
https://doi.org/10.1016/j.nonr....
6.
Moresco P. and Alboussi`ere T. (2004): Experimental study of the instability of the Hartmann layer.– J. Fluid Mech., vol.504, pp.167-181.
7.
Temam R. (2001): Navier-Stokes equations.– AMS Chelsea Publishing, Providence, RI, Theory and numerical analysis, Reprint of the 1984 edition.
8.
Martinson L. and Pavlov К. (1965): Magnetic hydrodynamics.– Riga, Znatne, vol.4, pp.61-66.
9.
Vatazhin A.B., Lyubimov G. A. and Regirer S. A. (1970): Magnetohydrodynamic Flows in Channels.– М., p.672.
10.
Tao Q. (2018): Local exact controllability for the planar compressible magnetohydrodynamic equations.– SIAM J. Control Optim., vol.56, No.6, pp.4461-4487.
11.
Yakhno O., Mamedov A. and Stas S. (2019): Influence of transverse magnetic field on flow destabilization in the channel.– Bulletin of the National Technical University "KhPI". Series: Hydraulic machines and hydraulic units, No.1, pp.25-29.
12.
Xiao Y. and Xin Z. (2013): On the inviscid limit of the 3D Navier-Stokes equations with generalized Navier-slip boundary conditions.– Commun. Math. Stat., vol.1, No.3, pp.259-279.
13.
Shercliff J.A. (1967): Magnetohydrodynamics course.– М., Мir, p.320.
14.
Hagan J. and Priede J. (2013): Weakly nonlinear stability analysis of magnetohydrodynamic channel flow using an efficient numerical approach.– Physics of Fluids, vol.25, p.124108.
https://doi.org/10.1063/1.4851....
15.
Davidson P.A. (2001): An Introduction to Magnetohydrodynamics.– publ. ed., in: Cambridge Texts in Applied Mathematics, Cambridge Univ. Press, Cambridge.
16.
Roberts P. H. (1967): An Introduction to Magnetohydrodynamics.– Longmans, Sec.6.2.
17.
Shercliff J.A. (1965): A Textbook of Magnetohydrodynamics.– Pergamon Press, Oxford, New York.
18.
Pleskacz L. and Fornalik-Wajs E. (2014): Magnetic field impact on the high and low Reynolds number flows.– J. Phys. Conf. Ser., vol.530, doi:10.1088/1742-6596/530/1/012062.
19.
Takashima M. (1996): The stability of the modified plane Poiseuille flow in the presence of a transverse magnetic field.– Fluid Dynamics Research, vol.17, pp.293-310,.
20.
Takashima M. (1998): The stability of the modified plane Couette flow in the presence of a transverse magnetic field, Fluid Dynamics Research, vol.22, pp.105-121.
21.
Pleskacz Ł. and Fornalik-Wajs E. (2019): Identification of the structures for low Reynolds number flow in the strong magnetic field.– Fluids, vol.4, No.36. p.21,
https://doi.org/10.3390/fluids....