ORIGINAL PAPER
Analytical Investigation of TAR for Enhancing Performance Using Varied Stack configuration and Varied Working Fluid
More details
Hide details
1
Mechanical Engineering, Government College of Engineering Chandrapur, India.
2
Associate Professor, Mechanical Engineering,, Government College of Engineering Nagpur,
India.
3
Mathematics, Shishu Niketan Model Sr Sec School, India
4
Institute of Mechanical Engineering,, Institute of Mechanical Engineering, University of Zielona Gora, Poland
5
Collegium Witelona State University, Legnica, POLAND
Submission date: 2024-10-28
Final revision date: 2024-12-14
Acceptance date: 2024-12-17
Online publication date: 2025-03-06
Publication date: 2025-03-06
Corresponding author
Anand Kumar Yadav
Mathematics, Shishu Niketan Model Sr Sec School, sector 22D, 160022, Chandigarh, India
International Journal of Applied Mechanics and Engineering 2025;30(1):127-142
KEYWORDS
TOPICS
ABSTRACT
Thermoacoustic cooling, which uses sound waves to transfer heat, is an environmentally friendly and simple alternative to conventional refrigeration. Gas mixture adjustment to improve cooling performance is understudied compared to pure gas use. Previous studies focused on pure gas systems, but helium-argon combinations can boost thermoacoustic efficiency. Studying these gas mixtures' synergy could improve cooling efficiency. This study examined different working fluid i.e. pure gas and blend of helium-argon gas to a Thermoacoustic Refrigerator (TAR) to improve performance. A helium-argon gas mixture's thermoacoustic COP and temperature differential were measured experimentally. The resonator stacks were made of spiral, parallel, and honeycomb with polynamide nylon 6 material. The study focuses on cooling load, frequency, and operating pressure. Our findings suggest that adding helium-argon gas to TARs may improve their performance, broadening refrigeration and cooling applications. Energy was saved by lowering the thermoacoustic activity start temperature using this mixture. The right mix of these gases can outperform pure gas systems, enabling sustained cooling, according to experiments. Researchers employ Mylar, Photographic films, and other stack materials to cool TAR, but 3D printing can create intricate stack structures with polynamide nylon 6. This study highlighted the use of single gas and blend of helium-argon gas mixture to explore polynamide nylon 6 stack materials with varied geometries. The system can be tested with other stack material and different gases at an optimum frequency of 500Hz, the cooling performance was observed. The experimental data simulated with the DELTAEC software
REFERENCES (34)
1.
Ali U., Al-Mufti O. and Janajreh I. (2024): Harnessing sound waves for sustainable energy: advancements and challenges in thermoacoustic technology.– Energy Nexus, vol.15, p.100320, DOI: 10.1016/j.nexus.2024.100320.
2.
Sahin M.A., Ali M., Park J. and Destgeer G. (2023): Fundamentals of acoustic wave generation and propagation.– in Acoustic Technologies in Biology and Medicine, Wiley, pp.1-36, DOI: 10.1002/9783527841325.ch1.
3.
Hou Z. (2022): Experimental study on pressure evolution of detonation waves penetrating into water.– Phys. Fluids, vol.34, No.7, DOI: 10.1063/5.0100446.
4.
Savun-Hekimoğlu B. (2020): A review on sonochemistry and its environmental applications.– Acoustics, vol.2, No.4. pp.766-775, DOI: 10.3390/acoustics2040042.
5.
Jadhav P.V., Mehta G.D. and Sakhale C.N. (2024): Effect of stack geometry and operating frequency on performance of thermoacoustic refrigeration.– J. Phys. Conf. Ser., vol.2779, No.1, p.012095, DOI: 10.1088/1742-6596/2779/1/012095.
6.
Siva Sakthi M., Swathiga Devi C. and Bogadi S. (2024): Design and analysis of a thermoacoustic cooling system with two-stack arrangement for different types of stacks BT.– Advances in Mechanical Engineering and Material Science, Springer Nature Singapore, pp.69-84.
7.
Di Meglio A. and Massarotti N. (2022): CFD modeling of thermoacoustic energy conversion: a review.– Energies, vol.15, No.10. DOI: 10.3390/en15103806.
8.
Bouramdane Z., Bah A., Alaoui M. and Martaj N. (2022): Numerical analysis of thermoacoustically driven thermoacoustic refrigerator with a stack of parallel plates having corrugated surfaces.– Int. J. Air-Conditioning Refrig., vol.30, No.1, p.1, DOI: 10.1007/s44189-022-00002-8.
9.
Xu J., Luo E. and Hochgreb S. (2021): A thermoacoustic combined cooling, heating, and power (CCHP) system for waste heat and LNG cold energy recovery.– Energy, vol.227, p.120341, DOI: 10.1016/j.energy.2021.120341.
10.
Zheng Q., Hao M., Miao R., Schaadt J. and Dames C. (2021): Advances in thermal conductivity for energy applications: a review.– Prog. Energy, vol.3, No.1, p.012002, DOI: 10.1088/2516-1083/abd082.
11.
Zhang K. (2021): The effect of particle arrangement on the direct heat extraction of regular packed bed with numerical simulation.– Energy, vol.225, p.120244,DOI: 10.1016/j.energy.2021.120244.
12.
Tao Y., Ren M., Zhang H. and Peijs T. (2021): Recent progress in acoustic materials and noise control strategies - a review.– Appl. Mater. Today, vol.24, p.101141, DOI: 10.1016/j.apmt.2021.101141.
13.
Da Silva J.D., Moreira D.C. and Ribatski G. (2021): An overview on the role of wettability and wickability as a tool for enhancing pool boiling heat transfer.– Advances in Heat Transfer, vol.53, pp.187-248. DOI: 10.1016/bs.aiht.2021.06.003.
14.
Kayes M.I. and Rahman M.A. (2023): Experimental investigation of a modified parallel stack for wet thermoacoustic engine to improve performance and suppress harmonics.– Appl. Acoust., vol.212, p.109569, DOI: 10.1016/j.apacoust.2023.109569.
15.
Gassar A.A.A., Koo C., Kim T.W. and Cha S.H. (2021): Performance optimization studies on heating, cooling and lighting energy systems of buildings during the design stage: a review.– Sustainability, vol.13, No.17, p.9815, DOI: 10.3390/su13179815.
16.
Xiao L. (2024): A highly efficient heat-driven thermoacoustic cooling system.– Cell Reports Phys. Sci., vol.5, No.2, DOI: 10.1016/j.xcrp.2024.101815.
17.
Griffin J.M., Jones S., Perumal B. and Perrin C. (2023): Investigating the detection capability of acoustic emission monitoring to identify imperfections produced by the metal active gas (MAG) welding process.– Acoustics, vol.5, No.3. pp.714-745, DOI: 10.3390/acoustics5030043.
18.
Di Meglio A., Di Giulio E., Dragonetti R. and Massarotti N. (2021): Analysis of heat capacity ratio on porous media in oscillating flow.– Int. J. Heat Mass Transf., vol.179, p.121724, DOI:10.1016/j.ijheatmasstransfer.2021.121724.
19.
Eanest Jebasingh B. and Valan Arasu A. (2020): A detailed review on heat transfer rate, supercooling, thermal stability and reliability of nanoparticle dispersed organic phase change material for low-temperature applications.– Mater. Today Energy, vol.16, p.100408, DOI:10.1016/j.mtener.2020.100408.
20.
Ghorbani B. and Amidpour M. (2021): Energy, exergy, and sensitivity analyses of a new integrated system for generation of liquid methanol, liquefied natural gas, and crude helium using organic Rankine cycle, and solar collectors.– J. Therm. Anal. Calorim., vol.145, No.3, pp.1485-1508, DOI: 10.1007/s10973-021-10659-9.
21.
Zhang R., Zhang X., Qing S., Luo Z. and Liu Y. (2023): Investigation of nanoparticles shape that influence the thermal conductivity and viscosity in argon-based nanofluids: a molecular dynamics simulation.– Int. J. Heat Mass Transf., vol.207, p.124031, DOI: 10.1016/j.ijheatmasstransfer.2023.124031.
22.
He Z., Yan Y. and Zhang Z. (2021): Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: a review.– Energy, vol.216, p.119223, DOI:10.1016/j.energy.2020.119223.
23.
Mohebbifar M. R. (2021): Optical measurement of gas vibrational-translational relaxation time with high accuracy by the laser photo-acoustic set-up.– Microchem. J., vol.164, p.106040, DOI:10.1016/j.microc.2021.106040.
24.
Ismail M., Yebiyo M. and Chaer I. (2021): A review of recent advances in emerging alternative heating and cooling technologies.– Energies, vol.14, No.2. DOI: 10.3390/en14020502.
25.
Chen M. and Ju Y.L. (2015): Effect of different working gases on the performance of a small thermoacoustic Stirling engine.– Int. J. Refrig., vol.51, pp.41-51, DOI: 10.1016/j.ijrefrig.2014.12.006.
26.
Giacobbe F.W. (1994): Estimation of Prandtl numbers in binary mixtures of helium and other noble gases.– J. Acoust. Soc. Am., vol.96, No.6, pp.3568-3580, DOI: 10.1121/1.410615.
27.
Swift G.W. (2017): Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators.– Springer,.
28.
Swift G.W. (1988): Thermoacoustic engines.– J. Acoust. Soc. Am., vol.84, No.4, pp.1145-1180, DOI: 10.1121/1.396617.
29.
Tijani M.E.H., Zeegers J.C.H. and De Waele A.T.A.M. (2002): Prandtl number and thermoacoustic refrigerators.– J. Acoust. Soc. Am., vol.112, No.1, pp.134-143, DOI: 10.1121/1.1489451.
30.
Belcher J.R., Slaton W.V., Raspet R., Bass H.E. and Lightfoot J. (1999): Working gases in thermoacoustic engines.– J. Acoust. Soc. Am., vol.105, No.5, pp.2677-2684, DOI: 10.1121/1.426884.
31.
Shen C., He Y., Li Y., Ke H., Zhang D. and Liu Y. (2009): Performance of solar powered thermoacoustic engine at different tilted angles.– Appl. Therm. Eng., vol.29, No.13, pp.2745-2756, DOI: 10.1016/j.applthermaleng.2009.01.008.
32.
Dong S., Shen G., Xu M., Zhang S. and An L. (2019): The effect of working fluid on the performance of a large-scale thermoacoustic Stirling engine.– Energy, vol.181, pp.378-386, DOI:10.1016/j.energy.2019.05.142.
33.
Ramadan I.A., Bailliet H., Poignand G. and Gardner D. (2021): Design, manufacturing and testing of a compact thermoacoustic refrigerator.– Appl. Therm. Eng., vol.189, p.116705,.
34.
Chi J. (2023): Numerical and experimental investigation on a novel heat-driven thermoacoustic refrigerator for room-temperature cooling.– Appl. Therm. Eng., vol.218, p.119330, DOI:10.1016/j.applthermaleng.2022.119330.