ORIGINAL PAPER
Axisymmetric Free Vibration of Layered Cylindrical Shell Filled with Fluid
 
More details
Hide details
1
Faculty of Entrepreneurship and Business, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
 
2
Koleg Genius Insan, Universiti Sains Islam Makaysia, Bandar Baru Nilai, 71800, Nilai, Negari Sembilan, Malaysia; Department of Mathematical Sciences, Faculty of Science Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
 
3
School of Applied Sciences and Mathematics, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, BE1410, Bandar Seri Begawan, Brunei Darussalam
 
4
Department of Mathematical Sciences, Faculty of Science Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Ship & Offshore Extreme Technology Industry-Academic Cooperation Research Center, Inha University, 100 Inha-Ro, Incheon, 22212, South Korea
 
 
Online publication date: 2021-12-07
 
 
Publication date: 2021-12-01
 
 
International Journal of Applied Mechanics and Engineering 2021;26(4):63-76
 
KEYWORDS
ABSTRACT
The aim of the study is to analyse the axisymmetric free vibration of layered cylindrical shells filled with a quiescent fluid. The fluid is assumed to be incompressible and inviscid. The equations of axisymmetric vibrations of layered cylindrical shell filled with fluid, on the longitudinal and transverse displacement components are obtained using Love’s first approximation theory. The solutions of displacement functions are assumed in a separable form to obtain a system of coupled differential equations in terms of displacement functions. The displacement functions are approximated by Bickley-type splines. A generalized eigenvalue problem is obtained and solved numerically for a frequency parameter and an associated eigenvector of spline coefficients. Two layered shells with three different types of materials under clamped-clamped boundary conditions are considered. Parametric studies are made on the variation of the frequency parameter with respect to length-to-radius ratio and length-to-thickness ratio.
REFERENCES (21)
1.
Forsberg K. (1969): Axisymmetric and beam-type vibrations of thin cylindrical shells.– AIAA Journal, vol.7, no.2, pp.221-227.
 
2.
Wang C., Ru C. and Mioduchowski A. (2015): Axisymmetric and beamlike vibrations of multiwall carbon nanotubes.– Physical Review B, vol.7, No.2, pp.221-227.
 
3.
Viswanathan K.K., Kim K.S., Lee J.H., Lee C.H. and Lee J.B. (2008): Axisymmetric vibrations of layered cylindrical shells of variable thickness using spline function approximation.– Structural Engineering and Mechanics, vol.28, No.6, pp.749-765.
 
4.
Viswanathan K.K., Aziz Z. A., Lee J.H. and Nurul Izyan M.D. (2015): Axisymmetric free vibration of layered conical shells using Chebyshev polynomial with collocation method.– 16 th Asia Pacific Vibration Conference 2015 (APVC 2015), 24-26 November 2015, Manuscript ID: 63539.
 
5.
Lopatin A.V. and Morozov E.V. (2019): Axisymmetric vibrations of the composite orthotropic cylindrical shell with rigid weightless end disks.– Thin-Walled Structures, vol.135, pp.463-471.
 
6.
Lakis A.A. and Sinno M. (1992): Free vibration of axisymmetric and beam-like cylindrical shells, partially filled with liquid.– International Journal for Numerical Methods in Engineering, vol.33, No.2, pp.235-268.
 
7.
Sinha B.K., Plona T.J., Kostek S. and Chang S. (1992): Axisymmetric wave propagation in fluid-loaded cylindrical shells. I: Theory.– The Journal of the Acoustical Society of America, vol.92, No.2, pp.1132-1143.
 
8.
Shen H., Paidoussis M.P., Wen J., Yu D. and Wen X. (2014): The beam-mode stability of periodic functionally-graded-material shells conveying fluid.– Journal of Sound and Vibration, vol.333, No.10, pp.2735-2749.
 
9.
Vasyl V.V., Degtyariov K.G. Naumenko V.V. and Strelnikova E.A. (2019): Singular boundary method in a free vibration analysis of compound liquid-filled shells.– WIT Trans. Eng. Sci, vol.126, pp.189-200.
 
10.
Filippenko G.V. and Zinovieve T.V. (2020): Advances in Mechanical Engineering.– In Modern Engineering: Science and Education, Springer, Saint Petersburg, Rusia, June 2020, pp.80-91.
 
11.
Sorokin S.V., Gautier F. and Pelat A. (2020): A hierarchy of models of axisymmetric wave propagation in a fluid-filled periodic cylindrical shell composed of high-contrast cells.– Mechanical Systems and Signal Processing, vol.136, pp.106487-106501.
 
12.
Bickley W.G. (1968): Piecewise cubic interpolation and two-point boundary problems.– Computer Journal, vol.11, pp.206-208.
 
13.
Viswanathanan K.K. and Navaneethakrishnan P.V. (2003): Free vibration study of layered cylindrical shells by collocation with splines.– Journal of Sound and Vibration, vol.260, No.5, pp.807-827.
 
14.
Hafizah A.K., Viswanathan K.K., Aziz Z.A. and Lee J.H. (2018): Vibration of antisymmetric angle-ply composite annular plates of variable thickness.– Journal of Mechanical Science and Technology, vol.32, No.5, pp.2155-2162.
 
15.
Viswanathan K.K., Nor Hafizah A.K. and Aziz Z.A. (2018): Free vibration of angle-ply laminated conical shell frusta with linear and exponential thickness variations.– International of Acoustics and Vibration, vol.23, No.2, pp.264-276.
 
16.
Nurul Izyan M.D., Viswanathan K.K., Aziz Z.A. and Prabakar K. (2016): Free vibration of layered cylindrical shells filled with fluid.– Applied Mathematics and Mechanics (English Edition), vol.37, No.6, pp.803-820.
 
17.
Nurul Izyan M.D., Aziz Z.A. and Viswanathan K.K. (2018): Free vibration of anti-symmetric angle-ply layered circular cylindrical shells filled with quiescent fluid under first order shear deformation theory.– Composite Structures, vol.193, pp.189-197.
 
18.
Nurul Izyan M.D., Aziz Z.A., Rabih Ghostine, Lee J.H. and Viswanathan K.K. (2019): Free vibration of cross-ply layered circular cylindrical shells filled with quiescent fluid under first order shear deformation theory.– International Journal of Pressure Vessels and Piping, vol.170, pp.73-81.
 
19.
Nurul Izyan M.D. and Viswanathan K.K. (2019): Vibration of symmetrically layered angle-ply cylindrical shells filled with fluid.– PLOS ONE, vol.14, No.17, pp.1-18.
 
20.
Zhang X., Liu G. and Lam K. (2001): Coupled vibration analysis of fluid filled cylindrical shells using the wave propagation approach.– Applied Acoustics, vol.62, pp.229-243.
 
21.
Iqbal Z., Naeem M.N., Sultana N., Arshad S.H. and Shah A.G. (2009): Vibration characteristics of FGM circular cylindrical shells filled with fluid using wave propagation approach.– Applied Mathematics and Mechanics (English Edition), vol.30, No.11, pp.1393-1404.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top