ORIGINAL PAPER
Axisymmetric Vibration for Micropolar Porous Thermoelastic Circular Plate
,
 
,
 
 
 
 
More details
Hide details
1
Department of Mathematics, Kurukshetra University, Kurukshetra, Haryana, India
 
2
Research Scholar (IKG PTU), Kapurthala (Punjab), India
 
3
Department of Mathematics, DAVIET, Jalandhar (Punjab), India
 
 
Online publication date: 2017-09-09
 
 
Publication date: 2017-08-01
 
 
International Journal of Applied Mechanics and Engineering 2017;22(3):583-600
 
KEYWORDS
ABSTRACT
The present investigation is concerned with a two dimensional axisymmetric problem in a homogeneous isotropic micropolar porous thermoelastic circular plate by using the eigen value approach. The Laplace and Hankel transform are used to solve the problem. The expression of displacements, microrotation, volume fraction field, temperature distribution and stresses are obtained in the transformed domain subjected to thermomechanical sources. A computer algorithm is developed for numerical computations. To obtain the resulting quantities in a physical domain, a numerical inversion technique is used. The resulting quantities are depicted graphically for a specific model. Some special cases are also deduced.
REFERENCES (26)
1.
Eringen A.C. (1966): Linear theory of micropolar elasticity. – Journal of Mathematics and Mechanics, vol.15, pp.909-923.
 
2.
Gauthier R.D. (1982): Experimental investigation on micropolar media. – Mechanics of Micropolar Media, CSIM Courses and Lectures, vol.1, pp.395–463.
 
3.
Eringen A.C. (1970): Foundations of Micropolar Thermoelasticit. – CSIM Udine, Course of Lectures 23, CDROM.
 
4.
Nowacki M. (1966): Couple-stresses in the theory of thermoelasticity. – Proceedings. IUTAM Symposia, vol.1, pp.259–278.
 
5.
Tauchert T.R., Claus Jr. W.D. and Ariman T. (1968): The linear theory of micropolar thermoelasticity, – International Journal of Engineering Science, vol.6, pp.36–47.
 
6.
Boschi E. and Iesan D. (1973): A generalized theory of linear micropolar thermoelasticity. – Mechanica, vol.8, pp.154-157.
 
7.
Passarella F. (1996): Some results in micropolar thermoelasticity. – Mechanics Research Communications, vol.23, pp.349-357.
 
8.
Cowin S.C. and Nunziato J.W. (1983): Linear elastic materials with voids. – Journal of Elasticity, vol.13, pp.125-147.
 
9.
Iesan D. (1985): Shock waves in micropolar elastic materials with voids. – Analele Stiintificeli Universita atti.I. Cuza, din Iase, vol.31, pp.177-186.
 
10.
Iesan D. (1986): A theory of thermoelastic materials with voids. - Acta Mechanica, vol.60, pp.67-89.
 
11.
Scarpetta E. (1990): On the fundamental solutions in micropolar elasticity with voids. – Acta Mechanica, vol.82, pp.151-158.
 
12.
Marin M. (1995): The mixed problem in elastostatic of micropolar materials with voids. – An: Stiinf Uni. Ovidius Constanta Ser. Mat., vol.3, pp.106-117.
 
13.
Marin M. (1996): Generalized solutions in elasticity of micropolar bodies with voids. – Rev. Acad. Canaria. Cienc., vol.8, pp.101-106.
 
14.
Ciarletta M., Scalia A. and Svanadze (2007): Fundamental solution in the theory of micropolar thermoelasticity for materials with voids. – Journal of Thermal Stresses, vol.30, No.3, pp.213-229.
 
15.
Kumar R. and Panchal M. (2011): Study of Circular Crested Waves in Micropolar Porous Medium Possessing Cubic Symmetry. – Bulletin of the Polish Academy of Sciences, Technical Sciences, vol.59, No.1.
 
16.
Ailawalia P. and Kumar R. (2011): Thermomechanical deformation in microplar porous thermoelastic material. – Mechanics of Advanced Materials and Structures, vol.18, No.4, pp.255-261.
 
17.
Othman M.I.A. and Youssef Atwa S (2012): Response of micropolar thermoelastic solid with voids due to various sources under green-naghdi theory. – Acta Mechanica Solida Sinica, vol.25, No.2, pp.197-209.
 
18.
Sharma K. and Marin M. (2013): Effect of Distinct Conductive and Thermodynamic Temperatures on the Reflection of Plane Waves in Micropolar Elastic Half-Space. – U.P.B. Sci. Bull. Series A, vol.75, No.2.
 
19.
Sharma K., Sharma S. and Bhargava R.R. (2013): Propagation of waves in micropolar thermoelastic solid with two temperatures bordered with layers or half spaces of inviscid liquid. – Materials Physics and Mechanics, vol.16, pp.64-81.
 
20.
Sharma K. (2013): Reflection at free surface in micropolar thermoelastic solid with two temperatures. – International Journal of Applied Mechanics and Engineering, vol.18, No.1, pp.217-234.
 
21.
Sharma K. and Kumar P. (2013): Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids. – Journal of Thermal Stresses, vol.36, pp.94-111.
 
22.
Kumar R., Sharma K.D. and Garg S.K. (2015): Fundamental solution in micropolar viscothermoelastic solids with void. – International Journal of Applied Mechanics and Engineering, vol.20, No.1, pp.109-125.
 
23.
Marin M. (2016): An approach of a heat flux dependent theory for micropolar porous media. – Mechanica, vol.51, No.5, pp.1127-1133.
 
24.
Kumar R. and Partap G. (2008): Porosity effect on circular crested waves in micropolar thermoelastic homogeneous isotropic plate. – International Journal of Applied Mathematics and Mechanics, vol.4, No.2, pp.1-18.
 
25.
Eringen A.C. (1984): Plane waves in non-local micropolar elasticity. – International Journal of Engineering Science, vol.22, pp.1113-1121.
 
26.
Dhaliwal R.S. and Singh A. (1980): Dynamical Coupled Thermoelasticity. – New Delhi: Hindustan Publication Corporation.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top