ORIGINAL PAPER
Comparing the Performance of Using a Smart Damper in a Semi-Active ‎‎Suspension Instead of a Traditional Damper Using MATLAB/Simulink
 
More details
Hide details
1
Department of Mechanical Engineering, College of Engineering, University of Baghdad, ‎Iraq, Baghdad ‎, Iraq
 
 
Submission date: 2024-04-29
 
 
Final revision date: 2024-05-25
 
 
Acceptance date: 2024-06-12
 
 
Publication date: 2024-09-12
 
 
Corresponding author
Lamyaa Mahdi Ali   

Department of Mechanical Engineering, College of Engineering, University of Baghdad, ‎Iraq, Baghdad ‎, Iraq - Baghdada, /, Baghdad, Iraq
 
 
International Journal of Applied Mechanics and Engineering 2024;29(3):1-16
 
KEYWORDS
TOPICS
ABSTRACT
‎ Given the importance of comfort and safety in various driving circumstances, the suspension system emerges as the most ‎crucial component. Two different suspension systems, passive (PSS) and semi-active (SASS), are compared for effectiveness in ‎this research. MATLAB/Simulink is used for simulation, employing a representative two-degree-of-freedom car model to ‎evaluate and compare the performance results of these systems. The differential equations of motion for the two systems are ‎modeled and simulated using software, which illuminates how they would behave under the same parameters and ‎circumstances. Additionally, a Magnetorheological damper (MR) model with a ¼ vehicle system is used to evaluate its behavior ‎on various types of roads, including those with steps, bumps, and random inputs. This study utilizes the Bingham plastic model ‎to compare the simulation results of SASS and PSS systems. After comparing the numerical and graphical results from the two ‎systems, it is observed that SASSs with controllers perform better than PSSs in terms of suspension adjustment and response ‎time. The SASS is superior to the PSS in suppressing oscillations by 55.12%, 77.47%, and 86.78% for step input, bump, and ‎random inputs, respectively. Additionally, the SASS is faster in eliminating oscillations compared to the PSS by 54% and 51.7% ‎for step input and bump inputs, respectively. ‎ ‎
REFERENCES (24)
1.
Al-Ashtari W. (2023): Fuzzy logic control of active suspension system equipped with a hydraulic actuator.– ‎Int. J. Appl. Mech. Eng., vol.28, No.3, pp.13-27, doi: 10.59441/ijame/172895.‎.
 
2.
‎[2]‎ Al-Araji H.M.H., Al-Zughaibi A.I.H. and Hussein E.Q. (2023): Testing two types of magneto-rheological ‎‎(MR) damper models with quarter car suspension system response.– Int. J. Tech. Phys. Probl. Eng., vol.15, ‎No.1, pp.52-61.‎.
 
3.
‎[3]‎ Wu J., Yang D., Cao W., Sun J., Wang Y. and Cao W.Z. (2023): Simulation study of semi-active suspension ‎fuzzy adaptive PID control system.– J. Phys. Conf. Ser., vol.2501, No.1, doi: 10.1088/1742-‎‎6596/2501/1/012040.‎.
 
4.
‎[4]‎ Bhise A.R., Desai R.G., Yerrawar M.R.N., Mitra A.C. and Arakerimath D.R.R. (2016): Comparison between ‎passive and semi-active suspension system using Matlab/Simulink.– IOSR J. Mech. Civ. Eng., vol.13, No.04, ‎pp.01-06, doi: 10.9790/1684-1304010106.‎.
 
5.
‎[5]‎ Kumar S., Medhavi A., Kumar R., and Mall P.K. (2022): Modeling, analysis and PID controller implementation ‎on suspension system for quarter vehicle model.– Journal of Mechanical Engineering and Sciences, vol.16, No.‎‎2., pp.8905-8916, doi: 10.15282/jmes.16.2.2022.08.0704.‎.
 
6.
‎[6]‎ Sinjari S. (2023): Comparing Optimization Algorithms for Parameter Identification of Sigmoid Experimental ‎Study on The Behaviour of a Magnetorheological (MR) Damper and Evaluation of Numerical Models.‎– Electronic Theses and Dissertations, University of Windsor, https://scholar.uwindsor.ca/et....
 
7.
‎[7]‎ Silva D.M.D., Avila S., Morais M.V.G. and Cavallini A.A. Jr (2023): Comparing optimization algorithms for parameter ‎identiication of sigmoid model for MR damper comparing optimization algorithms for parameter identification ‎of sigmoid model for MR damper.– No.6, doi: 10.21203/rs.3.rs-2898815/v1.‎.
 
8.
‎[8]‎ Sassi S., Sassi A., Cherif K. and Tarlochan F. (2018): Magnetorheological damper with external excitation for ‎more efficient control of vehicles dynamics.– J. Intell. Mater. Syst. Struct., vol.29, No.14, pp.2919-2932, doi: ‎‎10.1177/1045389X18781038.‎.
 
9.
‎[9]‎ Braz-Cesar M.T. and Barros R.C. (2010): Semi-active vibration control of buildings using MR dampers : ‎numerical and experimental verification.– 14th Eur. Conf. Earthq. Eng., p.829.‎.
 
10.
‎[10]‎ Pepe G., Roveri N. and Carcaterra A. (2019): Experimenting sensors network for innovative optimal control of ‎car suspensions.– Sensors (Switzerland), vol.19, No.14, pp.14-17, doi: 10.3390/s19143062.‎.
 
11.
‎[11]‎ Kang B.H., Jo B.H., Kim B.G., Hwang J.H. and Choi S.B. (2023): Linear and nonlinear models for drop ‎simulation of an aircraft landing gear system with MR dampers.– Actuators, vol.12, No.7, doi: ‎‎10.3390/act12070287.‎.
 
12.
‎[12]‎ Ochoa-Diaz C., Rocha T.S., Oliveria L.L. and Paredes M.E. (2014): An above-knee prosthesis with ‎magnetorheological variable-damping.– Proc. IEEE RAS EMBS Int. Conf. Biomed. Robot. Biomechatronics, ‎No.8, pp.108-113, doi: 10.1109/biorob.2014.6913761.‎.
 
13.
‎[13]‎ Abdul Aziz M., Muhtasim S. and Ahammed R. (2022): State-of-the-art recent developments of large ‎magnetorheological (MR) dampers.– Korean Society of Rheology, Australian Society of Rheology, vol.34, No.2, ‎doi: 10.1007/s13367-022-00021-2.‎.
 
14.
‎[14]‎ Zhang Y., Guo J., Yang J. and Li X. (2023): Recent structural developments and applications of ‎magnetorheological dampers (MRD): a review.– Magnetochemistry, vol.9, No.4, doi: ‎‎10.3390/magnetochemistry9040090.‎.
 
15.
‎[15]‎ Elderrat H.I. (2013): Research Towards the Design of a Novel Smart Fluid Damper Using a McKibben Actuator.– Submitted for the degree of Master of Philosophy, University of Sheffield, p.65.‎.
 
16.
‎[16]‎ Kim B.G., Yoon D.S., Kim G.W., Choi S.B., Tan A.S., and Sattel T. (2020): Design of a novel ‎magnetorheological damper adaptable to low and high stroke velocity of vehicle suspension system.– Appl. Sci., ‎vol.10, No.16, doi: 10.3390/app10165586.‎.
 
17.
‎[17]‎ Zhang S., Shi W., and Chen Z. (2021): Modeling and parameter identification of MR damper considering ‎excitation characteristics and current.– Shock Vib., vol.2021, No.3, doi: 10.1155/2021/6691650.‎.
 
18.
‎[18]‎ Yang G., Spencer B.F., Carlson J.D. and Sain M.K. (2002): Large-scale MR fluid dampers: modeling and ‎dynamic performance considerations.– Eng. Struct., vol.24, No.3, pp.309-323, doi: 10.1016/S0141-‎‎0296(01)00097-9.‎.
 
19.
‎[19]‎ Wang D.H. and Liao W.H. (2011): Magnetorheological fluid dampers: a review of parametric modelling.– ‎Smart Mater. Struct., vol.20, No.2, doi: 10.1088/0964-1726/20/2/023001.‎.
 
20.
‎[20]‎ Spencer Jr B.F., Dyke S.J., Sain M.K. and Carlson J.D. (1996): Phenomenological model of a ‎magnetorheological damper.– J. Eng. Mech., vol.230-238, No.123, pp.1-23, doi: 10.1061/(ASCE)0733-‎‎9399(1997)123.‎.
 
21.
‎[21]‎ Jamil M., Zafar S., and Gilani S.O. (2018): Designing PID controller based semi-active suspension system ‎using MATLAB simulink.– Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST, vol.224, No.7, pp.‎‎282-295, doi: 10.1007/978-3-319-94180-6_27.‎.
 
22.
‎[22]‎ Riazi B. (2021): Design and Investigation of a Semi-Active Suspension System in Automotive Applications.‎– Electronic Theses and Dissertations, University of Windsor, https://scholar.uwindsor.ca/et....
 
23.
‎[23]‎ Eshkabilov S. (2016): Modeling and simulation of non-linear and hysteresis behavior of magneto-rheological ‎dampers in the example of quarter-car model.– Engineering Mathematics, vol.1, No.1, pp.19-38, doi: 10.11648/j.engmath.20160101.12.
 
24.
‎[24]‎ Ismaili N. (2019): Performance analysis of passive, semi-active and active-controlled suspension systems ‎using MATLAB / SIMULINK.– Journal of Applied Sciences-Sut, vol.5, No.9, pp.94-105.‎.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top