ORIGINAL PAPER
Comparison of the Results for Calculation of Vortex Currents After Sudden Expansion of the Pipe with Different Diameters
 
More details
Hide details
1
Plekhanov Russian University of Economics in Tashkent, 3 Shakhriabad, Tashkent, 100164, Uzbekistan
 
 
Online publication date: 2022-06-14
 
 
Publication date: 2022-06-01
 
 
International Journal of Applied Mechanics and Engineering 2022;27(2):115-123
 
KEYWORDS
ABSTRACT
In this work, a numerical study of a sharply expanding highly swirling flow is carried out using v2-f models based on the Comsol Multiphysics 5.6 software package and a two-fluid turbulence model. The results obtained are compared with known experimental data with different pipe diameters. The purpose of this work is to test the ability of models to describe anisotropic turbulence. It is shown that the two-fluid model is more suitable for studying such flows.
REFERENCES (12)
1.
Abramovich G.N. (1984): Theory of Turbulent Jets.– Moscow, “Nauka”, p.718.
 
2.
Malikov Z.M. (2020): Mathematical model of turbulence based on the dynamics of two fluids.– Applied Mathematic Modeling, No.82, pp.409-436.
 
3.
Smirnov P.E. (2006): Testing the v2-f-model of turbulence in the calculation of flow and heat transfer in a channel with a sudden expansion.– Inzhenerno-Fizicheskij Zhurnal, vol.79, No.4, p.38.
 
4.
Patankar S.V. (1980): Numerical Heat Transfer and Fluid Flow.– Taylor and Francis, ISBN 978-0-89116-522-4, p.214.
 
5.
Dellenback P.A., Metzger D.R. and Neitzel G.P. (1988): Measurements in turbulent swirling flow through an abrupt expansion.– AIAA J., vol.26, No.6, pp.669-681.
 
6.
Anderson D.A., Tannehill J.C. and Pletcher R.H. (1990): Computational fluid mechanics and heat transfer.– M.: Mir, vol.1, pp-384, vol.2, pp-392.
 
7.
Mises R.V. (1927): Remarks on hydrodynamics.– NASA Transl. into english from Z. Angew. Math. Mech. (Berlin), vol.7, pp. 425-431.
 
8.
Bradshaw P., Ferriss D.H. and Atwell N.P. (1967): C alculation of boundary layer development using the turbulent energy equation.– J. Fluid Mech., vol.28, pp.593-616.
 
9.
Spalart, P.R. and Allmaras, S.R. (1992): A One-Equation Turbulence Model for Aerodynamics Flows.– Boeing Commercial Airplane Group, Seattle, Washington.
 
10.
Volk B.L., Lagoudas D.C., Chen Y.C. and Whitley K.S. (2010): Analysis of the finite deformation response of shape memory polymers: I. Thermomechanical characterization.– Smart Materials and Structures, vol.19, No.7, p.10, DOI: 10.1088/0964-1726/19/7/075005.
 
11.
Ratajczak M., Ptak M., Chybowski L., Gawdzińska K. and Będziński R. (2019): Material and structural modeling aspects of brain tissue deformation under dynamic loads.– Materials, MDPI, vol.12, No.2, Article number 271, p.13, doi: 10.3390/ma120271.
 
12.
Reparaz J.S., Pereira da Silva K., Romero A.H., Serrano J., Wagner M.R., Callsen G., Choi S.J., Speck J.S. and Goñi A.R. (2018): Comparative study of the pressure dependence of optical-phonon transverse-effective charges and linewidths in wurtzite.– In N. Phys. Rev. B, vol.98, Article number 165204, DOI: https://doi.org/10.1103/PhysRe....
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top