ORIGINAL PAPER
Complex dynamics of a heavy symmetrical gyroscope under a parametric nonlinear damping
 
More details
Hide details
1
Physique, Chimie et Technologie, Ecole Normale Supérieure de Natitingou
 
2
Génie Rurale, Ecole de Génie Rural, Université Nationale d'Agriculture, Kétou, Bénin
 
3
Laboratoire de Mécanique des Fluides, de la Dynamique Nonlinéaire et de la Modélisation des Systèmes Biologiques, Institut de Mathématiques et de Sciences Physiques, Bénin
 
These authors had equal contribution to this work
 
 
Submission date: 2024-06-25
 
 
Final revision date: 2024-10-31
 
 
Acceptance date: 2024-12-15
 
 
Online publication date: 2025-03-06
 
 
Publication date: 2025-03-06
 
 
Corresponding author
Hodévèwan Clément Miwadinou   

Physique, Chimie et Technologie, Ecole Normale Supérieure de Natitingou
 
 
International Journal of Applied Mechanics and Engineering 2025;30(1):112-126
 
KEYWORDS
TOPICS
ABSTRACT
This paper analyzes the chaos and coexistence of attractors of a heavy gyroscope with parametric nonlinear damping. After having found the mathematical model of the dynamics, we used the multiple scale technique to look for secondary resonances. Subsequently, the amplitude of the harmonic oscillations is determined based on the harmonic balance technique. Impact of each of the system parameters is analyzed on the amplitudes and frequency of resonances. By applying order four Runge-Kutta algorithm, the different dynamics of the gyroscope are determined and analyzed. Subharmonic resonances and harmonic oscillations are derived from the limited development the basic equation solved numerically to investigate the dynamics and coexistence of the gyroscope attractors. The analysis of impact of each parameter on the existence and disappearance of coexisting attractors is done numerically.
REFERENCES (37)
1.
Fuhong M. (2012): Analysis of generalized projective synchronization for a chaotic gyroscope with a periodic gyroscope.– Comm. Nonlinear Sci. Num. Sim., vol.17, pp.4917-4929.
 
2.
Ge Z.M., Chen H.K. and Chen H.H. (1996): The regular and chaotic motions of a symmetric heavy gyroscope with harmonic excitation.– J. Sound Vibr., vol.198, pp.131-147.
 
3.
Ge Z.M. and Chen H.K. (1996): Stability and chaotic motion of a symmetric heavy gyroscope.– Jpn. J. Appl. Phys., vol.35, pp.1954-1971.
 
4.
Tong X. and Mrad N. (2001): Chaotic motion of a symmetric gyro subjected to a harmonic base excitation.– J. Appl. Mech., vol.68, pp.681-684.
 
5.
Hounnan S.O., Miwadinou C.H. and Monwanou V.A. (2023): Nonlinear dynamics of a nonlinear damping gyroscope and its passive control.– J. Control. Sci. Engng., vol.2023, pp.1-17.
 
6.
Blekhman I.I. and Landa P.S. (2004): Conjugate resonances and bifurcations in nonlinear systems under biharmonical excitation.– Int. J. Non-linear Mech., vol.39, pp.421-426.
 
7.
Enjieu Kadji H.G. and Nana Nbendjo B.R. (2012): Passive aerodynamics control of plasma instabilities.– Commun. Nonlinear Sci. Numer. Simul., vol.17, pp.1779-1794.
 
8.
Siewe Siewe M., Moukam Kakmeni M.F. and Tchawoua C. (2004): Resonant oscillation and homoclinic bifurcation in a Φ6-Van der Pol oscillator.– Chaos Solit. Fract., vol.21, pp.841-853.
 
9.
Landa P.S. and McClintock P.V.E. (2000): Vibrational resonance.– J. Phys. A: Math. Gen., vol.l33, pp.433.
 
10.
Jeevarathinam C., Rajasekar S. and Sanjuan M.A.F. (2015): Vibrational resonance in the Duffing oscillator with distributed time-delayed feedback.– J. Appl. Nonlinear Dyn., vol.4, pp.1-15.
 
11.
Sarkar P. and Ray D.S. (2019): Vibrational anti-resonance in nonlinear coupled systems.– Phs. Rev. E, vol. 99, pp.1-7.
 
12.
Roy-Layinde T.O., Laoye J.A., Popoola O.O. and Vincent U.E. (2016): Analysis of vibrational resonance in bi-harmonically driven plasma.– Chaos. vol.26, pp.1-9.
 
13.
Enjieu Kadji H.G., Nana Nbendjo B.R. Chabi Orou J.B. and Talla P.K. (2008): Nonlinear dynamics of plasma oscillations modeled by an anharmonic oscillator.– Phys. Plasmas., vol.15, pp.032308-1-032308-13.
 
14.
Ge Z. M. and Chen H.H. (1996): Bifurcation and chaos in a rate gyro with harmonic excitation.– J. Sound Vib., vol.194, pp.107-117.
 
15.
Miwadinou C.H., Monwanou V.A., Hinvi L.A., Tamba V.K., Koukpémèdji A.A. and Chabi Orou J.B. (2020): Nonlinear oscillations of nonlinear damping gyros: resonances, hysteresis and multistability.– Int. J. Bifur. Chaos, vol.30, pp.2050203-1-2050203-14.
 
16.
Leutcho G.D., Jafari S., Hamarash I.I., Kengne J., Tabekoueng Njitacke Z. and Hussain I. (2020): A new megastable nonlinear oscillator with infinite attractors.– Chaos Solitons and Fractals, vol.134, p.109703.
 
17.
Leutcho G.D., Khalaf A.J.M., Tabekoueng Njitacke Z., Fonzin Fozin T. Kengne J., Jafari S. and Hussain I. (2020): A new oscillator with mega-stability and its Hamilton energy: infinite coexisting hidden and self-excited attractors.– Chaos, vol.30, pp.033112-1.
 
18.
Tabekoueng Njitacke Z., Sami Doubla I., Tsafack N. and Kengne J. (2021): Window of multistability and its control in a simple 3D Hopfield neural network: application to biomedical image encryption.– Neural Comp. Appl., vol.33, pp.6733-6752.
 
19.
Leonov G.A. and Kuznetsov N.V. (2013): Hidden attractors in dynamical systems. from hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits.– Int. J. Bifur. Chaos, vol.23, pp.1330002-1330002-69.
 
20.
Rajagopal K., Takougang Kingni S., Kom G.H., Pham V.-T., Karthikeyan A. and Jafari S. (2020): Self-excited and hidden attractors in a simple chaotic jerk system and in its time-delayed form: analysis, electronic implementation, and synchronization.– J. Korean Phys. Soci., vol.77, pp.145-152.
 
21.
Chowdhury S.N., Ghosh D. (2020): Hidden attractors: a new chaotic system without equilibria.– European Phys. J. Special Topics, vol.229, p.6.
 
22.
Chowdhury S.N., Majhi S., Ghosh D., Prasad A. (2019): Convergence of chaotic attractors due to interaction based on closeness.– Physics Letters A, vol.383, p.125997.
 
23.
Chowdhury S.N., Kundu S., Perc M., Ghosh D. (2021): Complex evolutionary dynamics due to punishment and free space in ecological multigames.– Proceedings of the Royal Society A, vol.477, p.20210397.
 
24.
Chowdhury S.N., Banerjee J., Perc M. and Ghosh D. (2023): Eco-evolutionary cyclic dominance among predators, prey, and parasites.– Journal of Theoretical Biology, vol.564, p.111446.
 
25.
Aguessivognon J.M., Miwadinou C.H. and Monwanou A.V. (2023): Effect of biharmonic excitation on complex dynamics of a two-degree-of-freedom heavy symmetric gyroscope.– Phys. Scr., vol.98, p.095230.
 
26.
Chen H.K. (2002): Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping.– J. Sound Vib., vol.255, pp.719-740.
 
27.
Dooren R.V. (1996):Comments on chaos and chaos synchronization of a symmetric gyros with linear – plus-cubic damping.– J. Sound Vib., vol.268, pp.632-634.
 
28.
Xu Y., Lei W. and Zheng H. (2005): Synchronization of two chaotic nonlinear gyros using active control.– Phys. Let. A., vol.343, pp.153-158.
 
29.
Polo M.F.P. and Molina M.P. (2007): A generalized mathematical model to analyze the nonlinear behavior of a controlled gyroscope in gimbals.– Nonlinear Dyn., vol.48, pp.129-152.
 
30.
Asokanthan S.F. and Wang T. (2008): Nonlinear instabilities in a vibratory gyroscope subjected to angular speed fluctuations.– Nonlinear Dyn., vol.54, pp.69-78.
 
31.
Roopaei M., Zolghadri Jahromi M., John R. and Lin T.C. (2010): Unknown nonlinear chaotic gyros synchronization using adaptive fuzzy sliding mode control with unknown dead-zone input.– Commun. Nonlinear Sci. Numer. Simul., vol.15, pp.2536-2545.
 
32.
Aghababa M.P. and Aghababa H.P. (2013): Chaos suppression of uncertain gyros in a given finite time.– Chin. Phys. B., vol.21, p.110505.
 
33.
Loembe-Souamy R.M.D., Jiang G.P., Fan C.X. and Wang X.W. (2015): Chaos synchronization of two chaotic nonlinear gyros using backstepping design.– Math. Pro. Eng., vol.2015, p.850612.
 
34.
Kpomahou Y.J.F., Adomou A., Adéchinan J.A., Yamadjako A.E. and Madogni I.V. (2022): Chaotic behaviors and coexisting attractors in a new nonlinear dissipative parametric chemical oscillator.– Complexity, vol.2022, p.9350516.
 
35.
Kpomahou Y.J.F., Adomou A., Yamadjako A.E. and Djossou J. (2022): Effect of amplitude-modulated force on horseshoe dynamics in Briggs-Rauscher chemical system modeled by a new parametric oscillator with asymmetric potential.– European Phys. J. Plus., vol.137, p.679.
 
36.
Kpomahou Y.J.F., Adéchinan J.A., Ngounou A.M. and Yamadjako A.E. (2022): Bursting, mixed-mode oscillations and homoclinic bifurcation in a parametrically and self-excited mixed Rayleigh-Liénard oscillator with asymmetric double well potential.– Pramana, vol.96, p.176.
 
37.
Nourou Y., Miwadinou C.H., Agossou D.Y. and Monwanou A.V. (2024): Effect of a parametric damping on nonlinear dynamics of a symmetric heavy gyroscope.– Indian J. Phys., vol.98, pp.3623-3633, https://doi.org/10.1007/s12648....
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top