The paper contains two parts. In the first part, basic relationships were derived and some problems connected with stability loss during hydraulic forming of round metallic drawpieces with liquid pressure were discussed. The aim of the considerations is to test drawability of sheets by estimation of acceptable values of plastic strains and the corresponding heights of spherical shells. The analysis was based on some selected real conditions of stability loss. The influence of the coefficient of material hardening for the drawpiece, the coefficient of normal anisotropy and coefficients of plane anisotropy on acceptable values of plastic strains and heights of the formed drawpieces corresponding to the given condition of stability loss was also tested.
REFERENCES(20)
1.
Banasiak Cz. (1971): Influence of the Anisotropy and the Hardening on the Drawability of the Steel Sheet (in Polish). – Doctor’s Thesis, Technical University of Wrocław.
Bressan J.D. and Williams J.A. (1983): The use of shear instability criterion to predict local necking in sheet metal deformation. – International Journal of Mechanical Science, vol.25, No.3, pp.155-168.
El-Sebaie M.G. and Mellor P.B. (1972): Plastic instability conditions in the deep-drawing of a circular blank of sheet metal. – International Journal of Mechanical Science, vol.14, pp.535-556.
Hill R. (1983): On intransic eigenstates in plasticity with generalized variables. – Mathematical Proceedings of Cambrigde Philosophy and Society., vol.93, pp.177-189.
Jentet J. (1961): Determination of the deep drawing capacity of light sheet metal on the basis of laboratory test. – Sheet Metal Industry, vol.38, No.415.
Marciniak Z. (1968): Analysis of the Stability of the Thin-Walled Coating in the Plastics State (in Polish). – Engineering Transactions, vol.4, Warszawa.
Marciniak Z. and Kuczyński K. (1967): Limit Strains in the Processes of Stretch-Forming Sheet Metal. – International Journal of the Mechanical Science, vol.9.
Michałowski Z. (1967): The Attempt of the Drawability and Resistances to Fracture of Thin Metal Sheets by Hydraulic Method (in Polish). – Notebooks of the Institute of Aviation, vol.3, No.3.
Moore G.G. and Wallace J.F. (1964/1965): The effect of anisotropy on instability in sheet-metal forming. – Journal of the Institute of Metals, vol.93, No.2, pp.33-38.
Okamoto T., Matsuoka T., Mayaski Y. and Sudo C. (1968): Ductile Fracture Strains of Steel Sheet by Hydraulic Bulge Test. – La Metalurgia Italiana, No.8.
Ostrowska-Maciejewska J., Szeptyński P. and Pęcherski R.B. (2013): Mathematical foundations of limit criterion for anisotropic materials. – Archives of Metallurgy and Materials, vol.58, No.4, pp.1223-1235.
Śloderbach Z. and Sawicki T. (1984): Evaluation of the Spherical Cap Height in a test of Hydraulic Forming for Certain Instability Conditions (in Polish). – IFTR-PAS Reports, No.4, Warsaw.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.