ORIGINAL PAPER
Determination of Material Parameters for Microbuckling Analysis of Fiber Reinforced Polymer Matrix Composites
 
 
More details
Hide details
1
Department of Mechanical Engineering Bialystok University of Technology Wiejska 45C, 15-351 Bialystok, POLAND
 
 
Online publication date: 2015-05-23
 
 
Publication date: 2015-05-01
 
 
International Journal of Applied Mechanics and Engineering 2015;20(2):373-383
 
KEYWORDS
ABSTRACT
This research focuses on studying the effect of the constitutive law adopted for a matrix material on the compressive response of a unidirectional fiber reinforced polymer matrix composite. To investigate this effect, a periodic unit cell model of a unidirectional composite with an initial fiber waviness and inelastic behavior of the matrix was used. The sensitivity of the compressive strength to the hydrostatic pressure, the flow rule and the fiber misalignment angle were presented. The model was verified against an analytical solution and experimental data. Results of this study indicate that a micromechanical model with correctly identified material parameters provides a useful alternative to theoretical models and experimentation.
 
REFERENCES (15)
1.
ANSYS users’s manual (Version 14). Cannonsburg PA: ANSYS, 2012.
 
2.
Barbero E.J. (1998): Prediction of compression strength of unidirectional polymer matrix composites. - J. Compos. Mater., vol.32, pp.483-502.
 
3.
Budiansky B. and Fleck N.A. (1993): Compressive failure of fibre composites. - J. Mech. Phys. Solids, vol.41, pp.183-211.
 
4.
Drucker D.C. and Prager W. (1952): Soil mechanics and plastic analysis for limit design. - Q. App. Math., vol.10, pp.157-165.
 
5.
Fleck N.A. (1997): Compressive failure of fiber composites. - Adv. Appl. Mech., vol.33, pp.43-117.
 
6.
Gutkin R., Pinho S.T., Robinson P. and Curtis P.T. (2010): Micro-mechanical modeling of shear-driven fibre compressive failure and of fibre kinking for failure envelope generation in CFRP laminates. - Compos. Sci. Technol., vol.70, No.8, pp.1214-1222.
 
7.
Guynn E.G., Ochoa O.O. and Bradley W.L. (1992): A parametric study of variables that affect fiber microbuckling initiation in composite laminates: Part I analyses. - J. Comp. Mater., vol.26, No.11, pp.1594-1611.
 
8.
Hsu S.Y., Vogler T.J. and Kyriakides S. (1999): On the axial propagation of kink bands in fiber composites: Part II analysis. - Int. J. Solids Structures, vol.36, No.4, pp.575-595.
 
9.
Jelf P.M. and Fleck N.A. (1994): The failure of composite tubes due to combined compression and torsion. - J. Mater. Sci., vol.29, pp.3080-3084.
 
10.
Kyriakides S., Arseculeratne R., Perry E.J. and Liechti K.M. (1995): On the compressive failure of fiber reinforced composites. - Int. J. Solids Structures, vol.32, No.6, pp.689-738.
 
11.
Morais A.B. (1996): Modelling lamina longitudinal compression strength of carbon fibre composite laminates. - J. Compos. Mater., vol.30, No.10, pp.1115-1131.
 
12.
Moran P.M., Liu X.H. and Shih C.F. (1995): Kink band formation and band broadening in fiber composites under compressive loading. - Acta Metall Mater; vol.43, No.8, pp.2943-2958.
 
13.
Pansart S., Sinapius M. and Gabbert U. (2009): A comprehensive explanation of compression strength differences between various CFRP materials: Micro-meso model, predictions, parameter studies. - Compos Part A, vol.40, No.4, pp.376-387.
 
14.
Riks E. (1979): An incremental approach to the solution of snapping and buckling problems. - Int. J. Solids Struct., vol.15, pp.529-551.
 
15.
Yurgatis S.W. (1987): Measurement of small angle misalignments in continuous fibre composites. - Compos. Sci. Technol., vol.30, pp.279-293.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top