ORIGINAL PAPER
Dual Solutions for Boundary Layer Flow of Moving Fluid over a Moving Surface with Power-Law Surface Temperature
More details
Hide details
1
Department of Mathematics, University of Burdwan Burdwan-713104, W.B., INDIA
2
Department of Mechanical Engineering Cleveland State University Cleveland, OH 44115, USA
Online publication date: 2013-04-19
Publication date: 2013-03-01
International Journal of Applied Mechanics and Engineering 2013;18(1):113-124
KEYWORDS
ABSTRACT
An analysis of heat transfer for boundary layer forced convective flow past a moving flat surface parallel to a moving stream is presented. The power-law surface temperature at the boundary is prescribed. The surface temperature varying directly (or inversely) with power-law exponent is considered. The similarity solutions for the problem are obtained and the reduced ordinary differential equations are solved numerically. To support the validity of the numerical results, a comparison is made with known results from the open literature for some particular cases of the present study. When the surface and the fluid move in the opposite directions, dual solutions exist.
REFERENCES (22)
1.
Abdulhafez T.A. (1985): Skin friction and heat transfer on a continuous flat surface moving in a parallel free stream. - Int. J. Heat Mass Transf., vol.28, pp.1234-1237.
2.
Abussita A.M.M. (1994): A note on a certain boundary-layer equation. - Appl. Math. Comp., vol.64, pp.73-77.
3.
Afzal N., Badaruddin A. and Elgarvi A.A. (1993): Momentum and heat transport on a continuous flat surface moving in a parallel stream. - Int. J. of Heat Mass Transfer, vol.36, No.13, pp.3399-3403.
4.
Bataller R.C. (2008): Radiation effects in the Blasius flow. - Appl. Math. Comp., vol.198, pp.333-338.
5.
Bhattacharyya K., Mukhopadhyay S. and Layek G.C. (2011): Slip effects on boundary layer stagnation-point flow and heat transfer towards a shrinking sheet. - Int. J. of Heat and Mass Transfer, vol.54, pp.308-313.
6.
Blasius H. (1908): Grenzschichten in Flüssigkeiten mit kleiner Reibung. - Zeitschrift für Mathematik und Physik, vol.56, pp.1-37.
7.
Chappidi P.R. and Gunnerson F.S. (1989): Analysis of heat and momentum transport along a moving surface. - Int. J. Heat Mass Transf., vol.32, pp.1383-1386.
8.
Cortell R. (2007): Flow and heat transfer in a moving fluid over a moving flat surface. - Theor. Comput. Fluid Dyn., vol.21, pp.435-446.
9.
Cortell R. (2008): A numerical tackling on Sakiadis flow with thermal radiation. - Chin. Phys. Lett., vol.25, pp.1340-1342.
10.
Howarth L. (1938): On the solution of the laminar boundary layer equations. - Proc. Roy. Soc. London A, vol.164, pp.547-579.
11.
Hussaini M.Y., Lakin W.D. and Nachman A. (1987): On similarity solutions of a boundary-layer problem with an upstream moving wall. - SIAM J. Appl. Math., vol.47, pp.699-709.
12.
Ishak A. (2009): Radiation effects on the flow and heat transfer over a moving plate in a parallel stream. - Chin. Phys. Lett., vol.26, No.3, 034701-034704.
13.
Ishak A., Nazar R. and Pop I. (2009): The effects of transpiration on the flow and heat transfer over a moving permeable surface in a parallel stream. - Chem. Engng. J., vol.148, pp.63-67.
14.
Klemp J.B. and Acrivos A. (1976): The moving-wall boundary layer with reverse flow. - J. Fluid Mech., vol.76, pp.363-381.
15.
Lin H.T. and Haung S.F. (1994): Flow and heat transfer of plane surface moving in parallel and reversely to the free stream. - Int. J. Heat Mass Transf., vol.37, pp.333-336.
16.
Magyari E. and Keller B. (2000): Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls. - Eur. J. Mech. B Fluids, vol.19, pp.109-122.
17.
Mukhopadhyay S. (2011): Heat transfer in a moving fluid over a moving non-isothermal flat surface. - Chin. Phys. Lett., vol.28, No.12, 124706.
18.
Mukhopadhyay S., Bhattacharyya K. and Layek G.C. (2011): Steady boundary layer flow and heat transfer over a porous moving plate in presence of thermal radiation. - Int. J. of Heat and Mass Transfer, vol.54, pp.2751-2757.
19.
Sakiadis B.C. (1961): Boundary-layer behaviour on continuous solid surfaces: Boundary-layer equations for two dimensional and axisymmetric flow. - AIChE J., vol.7, pp.26-28.
20.
Siekman J. (1962): The laminar boundary layer along a flat plate. - Z. Flugwiss., vol.10, pp.278-281.
21.
Sparrow E.M. and Abraham J.P. (2005): Universal solutions for the streamwise variation of the temperature of a moving sheet in the presence of a moving fluid. - Int. J. Heat Mass Transf., vol.48, pp.3047-3056.
22.
Wang L. (2004): A new algorithm for solving classical Blasius equation. - Appl. Math. Comp., vol.157, pp.1-9.