ORIGINAL PAPER
Effect of Magnetic Field on Thermosolutal Instability of Rotating Ferromagnetic Fluid Under Varying Gravity Field
,
 
,
 
 
 
 
More details
Hide details
1
Department of Mathematics, S.D. (P.G.) College, Muzaffarnagar, Uttar Pradesh-, 251001, India
 
 
Online publication date: 2021-01-29
 
 
Publication date: 2021-03-01
 
 
International Journal of Applied Mechanics and Engineering 2021;26(1):201-214
 
KEYWORDS
ABSTRACT
This paper deals with the theoretical investigation of the effect of a magnetic field, rotation and magnetization on a ferromagnetic fluid under varying gravity field. To find the exact solution for a ferromagnetic fluid layer contained between two free boundaries, we have used a linear stability analysis and normal mode analysis method. For the case of stationary convection, a stable solute gradient has a stabilizing effect, while rotation has a stabilizing effect if λ>0 and destabilizing effect if λ<0. Further, the magnetic field is discovered to have both a stabilizing and destabilizing effect for both λ>0 and λ<0. It is likewise discovered that magnetization has a stabilizing effect for both λ>0 and λ<0 in the absence of the stable solute gradient. Graphs have been plotted by giving numerical values of various parameters. In the absence of rotation, magnetic field and stable solute gradient, the principle of exchange of stabilities is found to hold true for certain conditions.
REFERENCES (19)
1.
Rosensweig R. E. (1985): Ferrohydrodynamics.– Cambridge University Press, Cambridge.
 
2.
Chandrasekhar S. (1981): Hydrodynamic and hydromagnetic stability.– Oxford University Press, London.
 
3.
Finlayson B. A. (1970): Convective instability of ferromagnetic fluids.– J. Fluid Mech., vol.40, pp.753-767.
 
4.
Sekar R. and Vaidyanathan G.(1993): Convective instability of a magnetized ferrofluid in a rotating porous medium.– Int. J. Eng. Sci., vol.31, pp.1139-1150.
 
5.
Gupta M. D. and Gupta A. S.(1979): Convective instability of a layer of a ferromagnetic fluid rotating about a vertical axis.– Int. J. Eng. Sci., vol.17, pp.271-277.
 
6.
Sunil, Bharti P. K. and Sharma R.C. (2004): Thermosolutal convection in ferromagnetic fluid.– Arch. Mech., vol.56, No.2, pp.117-135.
 
7.
Sunil, Divya and Sharma R. C. (2004): Effect of rotation on ferromagnetic fluid heated and soluted from below saturating a porous medium.– Journal of Geophysics and Engineering, vol.1, No.2, pp.116-127.
 
8.
Sunil, Divya and Sharma R. C. (2005): The effect of magnetic field dependent viscosity on thermosolutal convection in a ferromagnetic fluid saturating a porous medium.– Transport in Porous Media, vol.60, pp.251-274.
 
9.
Sunil, Chand P., Mahajan A. and Sharma P. (2011): Effect of rotation on double-diffusive convection in a magnetized ferrofluid with internal angular momentum.– J. Applied Fluid Mechanics, vol.4, No.4, pp.43-52.
 
10.
Siddheswar P.G. (1993): Rayleigh-Bénard convection in a ferromagnetic fluid with second sound.– Japan Soc. Mag. Liquids, vol.25, pp.32-36.
 
11.
Siddheswar P.G. (1995): Convective instability of ferromagnetic liquids bounded by fluid-permeable magnetic boundaries.– J. Magnetism and Magnetic Materials, vol.49, pp.148-150.
 
12.
Venkatasubramaniam S. and Kaloni P.N. (1994): Result of rotation on the Thermoconvective instability of a horizontal coating of ferroliquids.– Int. J. Engg. Sci., vol.32, No.2, pp.237-256.
 
13.
Sunil, Sharma R.C. and Divya (2005): Thermosolutal convection in a ferromagnetic fluid saturating a porous medium.– Journal of Porous Media, vol.8, No.4, pp.394-408.
 
14.
Sunil, Sharma R.C. and Divya (2005): Result of magnetic-field-dependent viscosity on a rotating ferromagnetic fluid heated and soluted from below saturating a porous medium.– Journal of Porous Media, vol.8, No.6, pp.569-588.
 
15.
Sharma S., Singh, V. and Kumar K. (2014): Magneto-rotational convection for ferromagnetic liquids in the presence of compressibility and heat source through a porous medium.– Special Topics & Reviews in Porous Media: An International Journal, vol.5, No.4, pp.311-323.
 
16.
Nadian P.K., Pundir R. and Pundir S.K. (2020): Thermal instability of rotating couple-stress ferromagnetic fluid in the presence of variable gravity field.– Journal of Critical Reviews, vol.7, No.19, pp.1842-1856.
 
17.
Nadian P.K., Pundir R. and Pundir S.K. (2020): Thermal instability of couple-stress ferromagnetic fluid in the presence of variable gravity field, rotation and magnetic field.– Journal of Critical Reviews, vol.7, No.19, pp.2784-2797.
 
18.
Nadian P.K., Pundir R. and Pundir S.K. (2020): Effect of rotation on couple-stress ferromagnetic fluid heated and soluted from below in the presence of variable gravity field.– Journal of Critical Reviews, vol.7, No.10, pp.2976-2986.
 
19.
Maxwell J. C. (1866): On the dynamical theory of gases.– Philosophical Transactions of the Royal Society of London, vol.157 A, pp.26-78.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top