ORIGINAL PAPER
Effect of soil consolidation on the fractality of the filtration law
 
More details
Hide details
1
Department of Fluid Mechanics, Institute of Mathematic and Mechanics Azerbaijan National Academy of Sciences, B. Vagabzadeh St., 9, AZ1141, Baku, AZERBAIJAN
 
2
Baku State University, Theoretical and Continuum Mechanics Department, Akademik Zahid Xalilov st., 33, AZ1148, Baku, AZERBAIJAN
 
 
Publication date: 2023-06-14
 
 
Corresponding author
Geylani Panahov
geylani.panahov@imm.az
 
 
International Journal of Applied Mechanics and Engineering 2023;28(1):84-94
 
KEYWORDS
ABSTRACT
In this paper, the effect of consolidation of the soil structure on the fractality of the fluid flow was evaluated. The equation of fractal law of flow in the porous medium under consolidation of two-phase, fully fluid-saturated soil was determined. Given all the simplifications, as well as the undoubted importance of the nature of the porous medium, which primarily determine the possible processes of both consolidation and fractal flow based on the results of the studies, we can conclude that a homogeneous porous reservoir at given parameters under the effect of groundwater pressure will expand its fractal structure.
 
REFERENCES (22)
1.
Markgraf W. (2011): Rheology in soils. Encyclopedia of Agrophysics.– Eds Glinski J., Horabik J. and Lipiec J., Springer Press, Dordrecht-Heidelberg-London-New York.
 
2.
Zhang J. and Tao G. (2011): A new model for soil consolidation based on microstructure.– J. Shanghai Jiaotong Univ., vol.16, No.1, pp.78-82, doi: 10.1007/s12204-011-1098-3.
 
3.
Fu X., Ding H., Sheng Q., Zhang Z., Yin D. and Chen F. (2022): Fractal analysis of particle distribution and scale effect in a soil–rock mixture.– Fractal Fract., vol.6, No.2, p.120, doi:10.3390/fractalfract6020120.
 
4.
Terzahgi C., Pek R.B. and Mesri G. (1996): Soil Mechanics in Engineering Practice.– John Willey and Sons, Inc., New York, p.534.
 
5.
Mashenko A.V., Ponomarev A.B. and Sychkina Y.N. (2014): Special sections of soil mechanics and rock mechanics.– Perm: Perm National Research Polytechnical University.
 
6.
Vyalov S.S. (1986): Rheological Fundamentals of Soil Mechanics.– Elsevier, Amsterdam, Netherlands, p.564.
 
7.
Mirzajanzadeh A.Kh. and Shakhverdiev A.Kh. (1997): Dynamic processes in oil and gas production.– Moscow: Nauka.
 
8.
Magara K. (1978): Compaction and fluid migration: practical petroleum geology.– Elsevier Scientific Pub. Co.
 
9.
Dobrynin V. (1970): Deformations and variations of physical properties of oil and gas reservoirs.– Moscow: Nedra.
 
10.
Iselidze O., Dakhnov A., Grigoryev Y., Semyonov E. and Kryukova I.B. (2018): The effect of effective pressure on changes in the physical and reservoir properties of rocks.– Gas Sci. Bull., vol.1, No.33, pp.95-99.
 
11.
Pachepsky Y., Crawford J.W. and Rawls W.J. (2000): Fractals in soil science.– Elsevier, vol.27, p295.
 
12.
Adler P.M., Thovert J.-F., Bekri S. and Yousefian F. (2002): Real porous media: local geometry and transports.– J. Eng. Mech., vol.128, No.8, pp.829–839, 10.1061/(ASCE)0733-9399(2002)128:8(829)
 
13.
Balankin A.S. and Elizarraraz B.E. (2012): Map of fluid flow in fractal porous medium into fractal continuum flow.– Phys. Rev. E, vol.85, No.5, p.056314, doi: 10.1103/PhysRevE.85.056314.
 
14.
Huang B., Guo C., Tang Y., Guo J. and Cao L. (2019): Experimental study on the permeability characteristic of fused quartz sand and mixed oil as a transparent soil.– Water, vol.11, No.12, p.2514. doi:10.3390/w11122514.
 
15.
Sahimi M. (1993): Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing.– Rev. Mod. Phys., vol.65, No.4, pp.1393-1534, doi: 10.1103/RevModPhys.65.1393.
 
16.
Yu B. (2008): Analysis of flow in fractal porous media.– Appl. Mech. Rev., vol.61, No.5, doi: 10.1115/1.2955849.
 
17.
Nigmatullin R.R. (1992): Fractional integral and its physical interpretation.– Theor. Math. Phys., vol.90, No.3, pp.242-251, doi: 10.1007/BF01036529.
 
18.
Ivanov P. (1991): Soils and foundations of hydraulic structures: soil mechanics.– Moscow: “Vysshaya shkola”.
 
19.
Golubev V.G. (2011): Mathematical modeling of filtration in inhomogeneous fractured porous media.– Bull. N.I. Lobachevsky Univ. Nizhny Novgorod, vol.4, No.3, pp.725-727.
 
20.
Panahov G.M. and Sultanov B.N. (2022): Cyclic shock wave in soil and determination of changes in and displacements.– Trans. ANAS, issue Mech., vol.42, no. 7, pp.44-52.
 
21.
Bohaienko V. and Bulavatsky V. (2020): Fractional-fractal modeling of filtration-consolidation processes in saline saturated soils.– Fractal Fract., vol.4, No.4, p.59, doi: 10.3390/fractalfract4040059.
 
22.
Bulavatsky V.M. (2021): Closed solutions of some boundary-value problems of filtration-consolidation dynamics within the fractured-fractal approach.– Cybern. Syst. Anal., vol.57, No.3, pp.383-395, doi: 10.1007/s10559-021-00363-9.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top