ORIGINAL PAPER
Effect of the inner cylinder endwall shape on the stability of Taylor-Couette flow
 
More details
Hide details
1
LEMI, Mechanical engineering Department, Faculty of Technology, University M'hamed Bougara of Boumerdes, Algeria
 
2
URAER, Unité de recherche appliquée en énergies renouvelable, Centre de développement des Energies Renouvelables, 47133 Ghardaia, Algeria
 
These authors had equal contribution to this work
 
 
Submission date: 2024-03-19
 
 
Final revision date: 2024-07-30
 
 
Acceptance date: 2024-08-22
 
 
Online publication date: 2024-12-12
 
 
Publication date: 2024-12-12
 
 
Corresponding author
DAIMALLAH Ahmed   

LEMI, Mechanical engineering Department, Faculty of Technology, University M'hamed Bougara of Boumerdes, Avenue de l'independance, 35000, Boumerdes, Algeria
 
 
International Journal of Applied Mechanics and Engineering 2024;29(4):96-105
 
KEYWORDS
TOPICS
ABSTRACT
The current research aims to study how changing the endwall shape of the inner cylinder affects the appearance of Ekman cells and the onset of Taylor vortices. A two-dimensional numerical method simulates the flow between two concentric cylinders, with the inner cylinder rotating while the outer cylinder and the upper and lower endwalls remain at rest. The method of solving the Navier–Stokes equations for incompressible viscous flows is provided by the Ansys Fluent software, which is based on the finite volumes method. The geometric parameters, such as the radius ratio (η) and the height ratio (Г), are fixed at η = 0.9 and Г = 9.85, respectively. The working fluid is an aqueous solution (μ = 48 mPa.s, ρ = 1050 kg/m³). The study focuses on modeling four configurations (A, B, C, and D): configuration (A) includes two flat plate endwall, configuration (B) features a hemispherical upper endwall and a flat lower plate endwall, configuration (C) consists of a flat upper endwall and a hemispherical lower endwall, and configuration (D) comprises two hemispherical endwalls. The obtained results indicate that the appearance of Ekman cells and the transition to Taylor vortex flow are specifically delayed for configuration (D). Additionally, the friction coefficient is affected by the modification of the endwalls. Indeed, configuration (D) contributes to a reduction of the skin friction coefficient by approximately 43% at the appearance of Ekman cells, and by 20% near the appearance of Taylor vortices compared to configuration (A).
REFERENCES (20)
1.
Lee Y.B., Kwak H.D., Kim C.H., and Lee N.S. (2005): Numerical prediction of slip flow effect on gas-lubricated journal bearings for MEMS/MST-based micro-rotating machinery.– Tribology International vol.38, No.2, pp.89-96.
 
2.
Bouabdallah A. and Cognet G. (1980): Laminar-turbulent transition in Taylor-Couette flow.– in Laminar Turbulent Transition, (IUTAM Conference), edited by R. Eppler and H. Fasel (Springer-Verlag, Berlin), pp.368-377.
 
3.
Pfister G. and Rehberg I. (1981): Space-dependent order parameter in circular Couette flow transitions.– Physics Letters A, vol.83, No.1, pp.19-22.
 
4.
Cliffe K.A. and Mullin T. (1985): A numerical and experimental study of anomalous modes in the Taylor experiment.– Journal of Fluid Mechanics, vol.153, pp.243-258.
 
5.
Taylor G.I. (1923): Stability of a viscous liquid contained between two rotating cylinders.– Philosophical Transactions of the Royal Society of London, Series A, Containing Papers of a Mathematical or Physical.
 
6.
Abshagen J., Heise M., Langenberg J. and Pfister G. (2007): Imperfect Hopf bifurcation in spiral Poiseuille flow.– Physical Review E, vol.75, No.1, p.016309.
 
7.
Hoffmann C., Lücke M. and Pinter A. (2005): Spiral vortices traveling between two rotating defects in the Taylor-Couette system.– Physical Review E, vol.72, No.5, p.056311.
 
8.
Snyder H.A. (1968): Stability of rotating Couette flow. I. Asymmetric waveforms.– Physics of Fluids, vol.11, No.4, pp.728-734.
 
9.
Heise M., Hochstrate K., Abshagen J. and Pfister G. (2009): Spirals vortices in Taylor-Couette flow with rotating endwalls.– Physical Review E, vol.80, No.4, p.045301.
 
10.
Sobolik V., Izrar B., Lusseyran F. and Skali S. (2000): Interaction between the Ekman layer and the Couette-Taylor instability.– International Journal of Heat and Mass Transfer, vol.43, No.24, pp.4381-4393.
 
11.
Sobolik V., Jirout T., Havlica J. and Kristiawan M. (2011): Wall shear rates in Taylor vortex flow. – Journal of Applied Fluid Mechanics, vol.4, pp.25-31.
 
12.
Czarny O., Serre E., Bontoux P. and Lueptow R.M. (2003): Interaction between Ekman pumping and the centrifugal instability in Taylor-Couette flow. – Physics of Fluids, vol.15, No.2, pp.467-477.
 
13.
Avila M., Grimes M., Lopez J. M. and Marques F. (2008): Global endwall effects on centrifugally stable flows.– Physics of Fluids, vol.20, No.10, p.104104.
 
14.
Poncet S., Da Soghe R., Bianchini C., Viazzo S. and Aubert A. (2013): Turbulent Couette-Taylor flows with endwall effects: A numerical benchmark.– International Journal of Heat and Fluid Flow, vol.44, pp.229-238.
 
15.
Daimallah A., Bouabdallah A., Nsom B., Adnane M. and Alemany A. (2009): Onset of instabilities in Taylor-Dean flow of yield-stress fluid.– Applied Rheology, vol.19, No.3, p.33960.
 
16.
Daimallah A. (2013): Etude des phénomènes d’instabilités en présence d’une suspension dans l’écoulement de Taylor-Dean.– Thèse de Doctorat en Cotutelle entre USTHB-Alger, Algérie et UBO-Brest, France.
 
17.
Adnane E., Lalaoua A. and Bouabdallah A. (2016): An experimental study of the laminar-turbulent transition in a tilted Taylor-Couette system subject to free surface effect.– Journal of Applied Fluid Mechanics, vol.9, No.3, pp.1097-1104, doi:10.18869/acadpub.jafm.68.228.24743.
 
18.
Oualli H., Mekadem M., Lebbi M. and Bouabdallah A. (2015): Taylor-Couette flow control by amplitude variation of the inner cylinder cross-section oscillation.– The European Physical Journal Applied Physics, vol.71, No.1, p.11102.
 
19.
Dandelia H., Kant R. and Narayanan V. (2022): Optimal control of growth of instabilities in Taylor-Couette flow.– Physics of Fluids, vol.34, p.044106, https://doi.org/10.1063/5.0086....
 
20.
Eymard R., Gallouët T. and Herbin R. (2000): Finite volume methods.– Handbook of Numerical analysis, vol.7, pp.713-1018, https://doi.org/10.1016/S1570-....
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top