ORIGINAL PAPER
Effects of viscous dissipation over an unsteady stretching surface embedded in a porous medium with heat generation and thermal radiation
 
More details
Hide details
1
Department of Mechatronics Engineering,, Federal University of Agriculture, Abeokuta, Nigeria., Nigeria
 
2
Department of Mechanical Engineering, University of Ibadan,, Nigeria
 
3
Department of Industrial and System Engineering, Lagos State University, Nigeria
 
4
Department of Electronics and Computer Engineering, Lagos State University,, Nigeria
 
 
Submission date: 2023-12-13
 
 
Final revision date: 2024-01-22
 
 
Acceptance date: 2024-06-24
 
 
Publication date: 2024-09-12
 
 
Corresponding author
Samuel Oluyemi Owoeye   

Department of Mechatronics Engineering,, Federal University of Agriculture, Abeokuta, Nigeria., Nigeria
 
 
International Journal of Applied Mechanics and Engineering 2024;29(3):17-31
 
KEYWORDS
TOPICS
ABSTRACT
This work analyzes the impact of viscous dissipation on an unstable stretching surface in a porous medium with heat generation and thermal radiation—an important factor for numerous engineering applications like cooling baths and plastic sheets. Using MATLAB's Runge-Kutta fourth-order approach, the controlling partial differential equations are converted into highly nonlinear ordinary differential equations that can be solved numerically. The findings show that a decrease in the skin friction coefficient, temperature profiles, velocity, and Nusselt number occurs when the unsteadiness parameter is increased. In contrast to the Prandtl number, which rises with temperature profile and reduced Nusselt number, the Eckert number rises with a dimensionless temperature profile and reduced Nusselt number. Reduced Nusselt number and temperature profile affect the heat generation parameter; a decrease in skin friction coefficient and velocity profile correlate with the porosity parameter. Furthermore, the radiation parameter rises as the temperature distribution and Nusselt number decrease.
 
REFERENCES (19)
1.
Cortel R. (2010): Internal hate generation and radiation effect on a certain free convection flow.– International Journal of Nonlinear Science, vol.9, No.4, pp.468-479.
 
2.
Sakiadis B.C. (1961): Boundary-layer behaviour on continuous solid surfaces: boundary-layer equations for two dimensional and axisymmetric flow.– Journal of American Institute of Chemical Engineers (AIChE), vol.7, No.2, pp.26-28, http://dx.doi.org/10.1002/aic.....
 
3.
Bhattacharya K., Swati M. and Layek, G. C. (2011): Steady boundary layer slip flow and heat transfer over a porous plate embedded in a porous media. Journal of Petroleum Science and Engineering, vol.21, No.3, pp.304-309.
 
4.
Fang T.G., Zhang J. and Yao S.S. (2009): Viscous flow over an unsteady shrinking sheet with mass transfer.– Chinese Physics Letter, vol.26, No.1, pp.703-710.
 
5.
Fang T. and Zhang J. (2010): Thermal boundary layers over a shrinking sheet: an analytical solution.– Acta Mechanica, vol.20, No.9, pp.325-343.
 
6.
Kumaran V. and Ramanaiah G. (1996): A note on the flow over a stretching sheet.– Acta Mechanica, vol.11, No.6, pp.229-233.
 
7.
Ali M.E. and Magyari E. (2007): Unsteady fluid and heat flow are induced by a submerged stretching surface while its steady motion is slowed down gradually.– International Journal of Heat Mass Transfer, vol.50, No.2, pp.188-195.
 
8.
Anderson H., Aarseth J.B. and Dandapat B. S. (2000): Heat transfer in a liquid film on an unsteady stretching surface.– International Journal of Heat Mass Transfer, vol.43, No.4, pp.69-74.
 
9.
Ahmed Refaie Ali, Khuram Rafique, Maham Imtiaz, Rashid Jan, Hammad Alotaibi, Ibrahim Mekawy (2024): Exploring magnetic and thermal effects on MHD bio-viscosity flow at the lower stagnation point of a solid sphere using Keller box technique.– Partial Differential Equations in Applied Mathematics, vol.9, No.1, pp.1-8, https://doi.org/10.1016/j.padi....
 
10.
Shankar Goud, Pudhari Srilatha, Thadakamalla Srinivasulu, Yanala Dhamendar Reddy, Kanti Sandeep Kumar. (2023): Induced by heat source on unsteady MHD free convective flow of Casson fluid past a vertically oscillating plate through porous medium utilizing finite difference method.– Materials Today: Proceedings, pp.234-245, https://doi.org/10.1016/j.matp....
 
11.
Mohammad Ferdows, Md Ghulam Murtaza, Jagadis Chandra Misra, Efstratios Em Tzirtzilakis and Faris Alzahrani. (2021): Dual solutions for boundary layer flow and heat transfer of biomagnetic fluid over a stretching/shrinking sheet in presence of a magnetic dipole and a prescribed heat flux.– International Journal of Applied Electromagnetics and Mechanics, vol.65, pp.235-251.
 
12.
Mahendra D.L., Viharika J.U., Ramanjini V., Makinde O.D. and Vishwanatha U.B. (2023): Entropy analysis on the bioconvective peristaltic flow of gyrotactic microbes in Eyring-Powell nanofluid through an asymmetric channel.– Journal of the Indian Chemical Society, vol.100, No.3, pp.935-943.
 
13.
Dharmaiah G., Shankar Goud B., Ali Shah N, and Faisal M. (2023): Numerical analysis of heat and mass transfer with viscous dissipation, Joule dissipation, and activation energy.– International Journal of Ambient Energy, vol.44, No.1, pp.2090-2102, DOI: 10.1080/01430750.2023.2224335.
 
14.
Prakash J., Tripathi D. and Anwar Bég O. (2023): Computation of EMHD ternary hybrid non-Newtonian nanofluid over a wedge embedded in a Darcy-Forchheimer porous medium with zeta potential and wall suction/injection effects.– International Journal of Ambient Energy, vol.44, No.1, pp.2155-2169, DOI: 10.1080/01430750.2023.2224339.
 
15.
Freidoonimehr N., and Rahimi A.B. (2019): Exact-solution of entropy generation for MHD nanofluid flow induced by a stretching/shrinking sheet with transpiration: dual solution.– Advanced Powder Technology, vol.28, No.2, pp.671-685.
 
16.
Elbashbeshy E.M., Asker H.G., Abdelgaberc K. and Sayed E.A. (2018): Flow and Heat transfer over a stretching surface with variable thickness embedded in a Maxwell fluid and porous medium with radiation.– Thermal Science, 23, No.5B, pp.3105-3116, doi:10.4172/2168-9873.1000307.
 
17.
Ali M.E. (1994): Heat transfer characteristics of a continuous stretching surface.– Warme und Stoffubertragum. vol.29, No.2, pp.227-234.
 
18.
Ishak A., Nazar R. and Pop I. (2008): Heat transfer over an unsteady stretching surface with prescribed heat flux.– Canadian Journal of Physics, vol.86, No.6, pp.853-855.
 
19.
Anjali D. and Vasantha K. (2018): Thermal radiation, viscous dissipation, ohmic dissipation and mass transfer effects on unsteady hydromagnetic flow over a stretching surface.– Ain Shams Engineering Journal, vol.9, No.4, pp.1161-1168.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top