ORIGINAL PAPER
Evaluation of microstructure and mechanical properties resulting from gas nitriding process for different types of steel
 
More details
Hide details
1
Production Engineering and Metallurgy Department,, University of Technology, Baghdad, Iraq., Iraq
 
2
company for steel industries,, ministry of industry and minerals, Baghdad, Iraq., Iraq
 
3
Department of Engineering Machine and Agriculture Equipment, College of Agricultural Engineering Sciences,, University of Baghdad, Iraq., Iraq
 
 
Submission date: 2024-08-13
 
 
Final revision date: 2024-10-27
 
 
Acceptance date: 2024-11-15
 
 
Online publication date: 2025-03-06
 
 
Publication date: 2025-03-06
 
 
Corresponding author
Faras Q. Mohammed   

Production Engineering and Metallurgy Department,, University of Technology, Baghdad, Iraq., Iraq
 
 
International Journal of Applied Mechanics and Engineering 2025;30(1):101-111
 
KEYWORDS
TOPICS
ABSTRACT
This work investigates the effect of the gas nitriding process on the surface layer microstructure and mechanical properties for steel 37, tool steel X155CrVMo12-1 and stainless steel 316L. Nitriding was conducted at a temperature of 550 °C for 2 hours during the first stage and at 750 °C for 4 hours during the second stage. SEM and X-ray diffraction tests were performed to evaluate the microstructural features and the major phases formed after surface treatment. SEM and X-ray diffraction tests were performed to assess the microstructural features and the primary phases formed after surface treatment. The new secondary precipitates were identified as γ′-Fe4N, ε (Fe2–3N), and α-Fe, exhibiting an uneven chain-like pattern within columnar grains. A significant increase in the nitride layer thickness (34.4 µm) was achieved for X155 compared to AISI 316L and steel 37. Also, Gas nitriding caused a significant increase in hardness at the first stage for X 155 tool steel and AISI316L steel with hardness percentage enhancement of 0.87%(655HV) and 0.28% (219HV) respectively, while for steel37 samples the hardness reached its maximum value of 340HV for the second nitriding stage with hardness percentage enhancement of 0.78%. There was no significant improvement in surface hardness after second nitriding stages for X155 and AISI 316L steels. The effects of time and gas flow rate during the process were particularly evident on hardness values, especially after the first stage.
REFERENCES (32)
1.
Thamir A.D., Haider A.J. and Mohammed F.Q. (2017): Titanium-base nanostructure coatings for AISI M52 tool steel by gas-phase mix process.– Engineering and Technology Journal, vol.35, No.3, Part A, pp.181-190.
 
2.
Biehler J., Hoche H. and Oechsner M. (2017): Corrosion properties of polished and shot-peened austenitic stainless steel 304L and 316L with and without plasma nitriding.– Surf. Coatings Technol., vol.313, pp.40-46, doi: https://doi.org/10.1016/j.surf....
 
3.
Cho K.T., Song K., Oh S.H., Lee Y.K. and Lee W.B. (2014): Enhanced surface hardening of AISI D2 steel by atomic attrition during ion nitriding.– Surface and Coatings Technology, vol.25, pp.115-121.
 
4.
Hubbard P., Partridge J.G., Doyle E.D., Mcculloch D.G., Taylor M.B. and Dowey S.J. (2010): Investigation of nitrogen mass transfer within an industrial plasma nitriding system I: the role of surface deposits.– Surf. Coat. Technol., vol.204, pp.1145-1150, http:// dx.doi.org/10.1016/j.surfcoat.2009.08.029.
 
5.
Knerr C.H., Rose T.C. and Filkowski J.H. (1991): Gas Nitriding of Steels.– ASM Handbook, vol.4, ASM International, pp.867-881.
 
6.
Properties and Selection Irons, Steels and High-performance Alloys.– vol.1, 10th ed., Ohio, ASM Metals Handbook, 2005.
 
7.
Davis J.R. (1994): Stainless Steels.– ASM specialty handbook, ASM International, USA.
 
8.
Uhríčik M., Palček P., Hudecová S., Šurdová Z., Slezák M. and Chvalníková V. (2024): The influence of heat treatment on the nitriding layer on austenitic steel.– Journal of Physics: Conference Series, IOP Publishing, doi:10.1088/1742-6596/2712/1/012007.
 
9.
Thamir A.D., Haider A.J., Mohammed F.Q. and Chahrour K.M. (2017): Hybrid gas phase Ti-B-C-N coatings doped with Al.– Journal of Alloys and Compounds., vol.723, pp.368-375.
 
10.
Mohammed M.T., Khan Z.A. and Siddiquee A.N. (2014): Surface modifications of titanium materials for developing corrosion behavior in human body environment: a review.– Procedia Materials Science, vol.6, pp.1610-1618.
 
11.
Bottoli F., Jellesen M.S., Christiansen T.L., Winther G. and Somers M.A.J. (2018): High temperature solution-nitriding and low-temperature nitriding of AISI 316: Effect on pitting potential and crevice corrosion performance.– Appl. Surf. Sci. vol.431, pp.24-31, doi:https://doi.org/10.1016/j.apsu....
 
12.
Chen N., Ma G., Zhu W., Godfrey A., Shen Z., Wu G. and Huang X. (2019): Enhancement of an additive-manufactured austenitic stainless steel by post-manufacture heat-treatment.– Mater. Sci. Eng. A., vol.759, pp.65-69, doi:https://doi.org/10.1016/j.msea....
 
13.
Visuttipitukul P., Paarai C. and Kuwahara H. (2006): Characterization of plasma nitrided AISI H13 tool steel.– Acta Metallurgica Slovaca, vol.12, No.3, pp.264-274.
 
14.
Espinoza R.C., Vera M.A., Wettlaufer M., Kerl M., Barth S., Garibaldi P.M., Guillen J.C.D., García H.M.H. Arroyo R.M. and Ortega J.A. (2024): Study on the tribological properties of DIN 16MnCr5 Steel after duplex gas-nitriding and pack boriding.– Materials, MDPI, vol.17, p.3057, https://doi.org/10.3390/ma1713....
 
15.
Saeidi K., Gao X., Zhong Y. and Shen Z.J. (2015): Hardened austenite steel with columnar subgrain structure formed by laser melting.– Mater. Sci. Eng. A., vol.625, pp.221-229, doi:https://doi.org/10.1016/j.msea....
 
16.
Wang Y. (1997): A study of PVD coatings and die materials for extended die-casting die life.– Surface and Coatings Technology, vol.94-95, pp.60-63, https://doi.org/10.1016/S0257-....
 
17.
Fayyadh S.K. and Mohammed F.Q. (2023): Corrosion resistance enhancement for low carbon steel by gas phase coating.– Journal of Mechanical Engineering, vol.20, No.2, pp.139-152.
 
18.
Akhtar S.S., Arif A.F.M. and Yilbas B.S. (2010): Evaluation of gas nitriding process with in-process variation of nitriding potential for AISI H13 tool steel.– International Journal of Advanced Manufacturing Technology, vol.47, pp.687-698.
 
19.
Sjöström J. and Bergström J. (2004): Thermal fatigue testing of chromium martensitic hot-work tool steel after different austenitizing treatments.– Mater. Process Technol., vol.153-154, pp.1089-1096.
 
20.
Youn K.T., Rhyim Y.M, Lee J.H., Lee C.G. and Jung Y.C. (2007): Effect of gas nitriding on the thermal fatigue behavior of martensitic chromium hot-work tool steel.– Key Eng. Mater., vol.345-346, pp.701-704.
 
21.
Mohammed M.T., Lafta A.H. and Mohammed F.Q. (2023): Surface characterization of pure and composite sol-gel nano-coatings deposited on 316L stainless steel for hard tissue replacements.– Materials Research., vol.26, e20220479, https://doi.org/10.1590/1980-5....
 
22.
Hirsch T., Clarke T.G.R. and Rocha A.S. (2007): An in-situ study of plasma nitriding.– Surf. Coat. Technol., vol.201, pp.6380-6386.
 
23.
Cui Z.D., Zhu S.L., Man H.C. and Yang X.J. (2005): Microstructure and wear performance of gradient Ti/TiN metal matrix composite coating synthesized using a gas nitriding technology.– Surf. Coating. Technol., vol.190, pp.309-313.
 
24.
Kochmański P., Długozima M. and Baranowska J. (2022): Structure and properties of gas-nitrided, precipitation-hardened martensitic stainless steel.– Materials, vol.15, No.3, p.907, https://doi.org/10.3390/ ma15030907.
 
25.
Lisiecki A. (2015): Titanium matrix composite Ti/TiN produced by diode laser gas nitriding.– Metals-Basel, vol.5, pp.54-69.
 
26.
Xu Y.H., Zhu Z.H., Zhao H. and Zhou J. (2019): MoNb12O33 as a new anode material for high-capacity, safe, rapid and durable Li+storage: structural characteristics, electrochemical properties and working mechanisms.– Journal of Materials Chemistry A, vol.7, No.11, p.12, https://doi.org/10.1039/rsc.
 
27.
Smoljan B. (2002): AMST’02 Advanced Manufacturing Systems and Technology.– Proceedings of the Sixth International Conference, ISBN-978-3-7091-2557-1.
 
28.
Vander Voort G.F., Lucas G.M. and Manilova E.P. (2004): Metallography and microstructures of stainless steels and maraging steels.– In: Vander Voort GF, editor. Metallogr. Microstruct. ASM International, pp.670-700, https://doi.org/10.31399/ asm.hb.v09.a0003767.
 
29.
Totten G.E. (2007): Steel Heat Treatment Handbook.– Second Edition, CRC Press, Boca Raton.
 
30.
Zhong Y., Liu L., Wikman S., Cui D., Shen Z. and Nucl J. (2016): Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting.– Journal of Nuclear Materials, vol.470 pp.170-178, doi:10.1016/j.jnucmat.2015.12.034.
 
31.
Al-Saraireh F.M. and Suhymat S.A. (2024): Effect of gas nitriding parameters on the micro-hardness of high-speed steel-cutting tools.– Journal of Applied Engineering Science, vol.22, No.3, pp.621-633, doi:10.5937/jaes0-50375.
 
32.
Singh R. and Jit B. (2021): Effect of carbide precipitation on 316L austenitic stainless steel welded joints.– Notion Press India, ISBN: 978-1684871735.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top