ORIGINAL PAPER
Flows of Dehaven Fluid in Symmetrically Curved Capillary Fissures and Tubes
,
 
,
 
 
 
 
More details
Hide details
1
University of Zielona Góra, Faculty of Mechanical Engineering, ul. Szafrana 4, 65-516, Zielona Góra, Poland
 
 
Online publication date: 2018-06-04
 
 
Publication date: 2018-05-01
 
 
International Journal of Applied Mechanics and Engineering 2018;23(2):521-550
 
KEYWORDS
ABSTRACT
In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of DeHaven type fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. variable cross-section, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. Each example is concluded with a presentation of the formulae for the velocity flow on the outer surface of a thin porous layer. Upon introduction of hindrance factors, these formulae may be presented in the most general forms.
REFERENCES (46)
1.
Bear J. (1972): Dynamics of Fluids in Porous Media. – New York: Elsevier.
 
2.
Greenkorn R.A. (1983): Flow Phenomena in Porous Media. – New York: Marcel Dekker Inc..
 
3.
Nield D.A., Bejan A. (1995): Convection in Porous Media. – 2 nd ed., New York: Springer-Verlag.
 
4.
Vafai K. (1984): Convective flow and heat transfer in variable porosity media. – J. Fluid Mech., vol.147, pp.233-259.
 
5.
Vafai K. (1986): Analysis of the channelling effect in variable porosity media. – ASME J. Energy Res. Technol., vol.108, 131-139.
 
6.
Vafai K. (2000): Handbook of Porous Media. – 1 st ed., New York: Marcel Dekker Inc..
 
7.
Vafai K. (2005): Handbook of Porous Media. – 2 nd ed., New York: Taylor & Francis Group.
 
8.
Hadim H. and Vafai K. (2000): Overview of current computational studies of heat transfer in porous media and their applications: forced convection and multiphase transport. – In: Advances in Numerical Heat Transfer. – New York: Taylor & Francis Group.
 
9.
Vafai K. and Hadim H. (2000): Overview of current computational studies of heat transfer in porous media and their applications: natural convection and mixed convection. – In: Advances in Numerical Heat Transfer. – New York: Taylor & Francis Group.
 
10.
Vafai K. and Tien C.L. (1982): Boundary and inertia effects on convective mass transfer in porous media. – Int. J. Heat Mass Transfer, vol.25, pp.1183-1190.
 
11.
Amiri A. and Vafai K. (1998): Transient analysis of incompressible flow through a packed bed. – Int. J. Heat Mass Transfer, vol.41, pp.4259-4279.
 
12.
Alazmi B. and Vafai K. (2002): Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions. – Int. J. Heat Mass Transfer, vol.45, pp.3071-3087.
 
13.
Khanafer K.M., Bull J.L., Pop I. and Berguer R. (2007): Influence of pulsatile blood flow and heating scheme on the temperature distribution during hyperthermia treatment. – Int. J. Heat Mass Transfer, vol.50, pp.4883-4890.
 
14.
Peng X.F. and Wu H.L. (2005): Pore-scale transport phenomena in porous media. – In: Transport Phenomena in Porous Media III, Elsevier, New York, pp.366-398.
 
15.
Harris S.D., Fishert Q.J, Karimi-Fard M., Vaszi A.Z. and Wu K. (2005): Modelling the effects of faults and fractures on fluid flow in petroleum reservoirs. – In: Transport Phenomena in Porous Media III, Elsevier, New York, pp.441-476.
 
16.
Karamouz M., Ahmadi A. and Akhbari M. (2001): Groundwater Hydrology: Engineering, Planning, and Management. – CRC Press, New York: Taylor & Francis Group.
 
17.
Yeh W.W. (2015): Optimization methods for groundwater modelling and management. – Hydrogeology Journal, vol.23, pp.1051-1065.
 
18.
Jivkov A.P., Hollis C., Etiese F., McDonald S.A. and Withers P.J. (2013): A novel architecture for pore network modelling with applications to permeability of porous media. – J. Hydrology, vol.486, pp.246-258.
 
19.
Xiong Q., Baychev T.G. and Jivkov A.P. (2016): Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport. – J. Contaminant Hydrology, vol.192, pp.101-117.
 
20.
Mazaheri A.R., Zerai B., Ahmadi G., Kadambi J.R., Saylor B.Z., Oliver M. and Smith D.H. (2005): Computer simulation of the flow through a lattice flow-cell model. – Advances in Water Resources, vol.28, pp.1267-1279.
 
21.
Joekar-Niasar V., Hassanizadeh S.M., Pyrak-Nolte L.J. and Berentsen C. (2009): Simulating drainage and imbibition experiment in a high-porosity micromodel using an unstructured pore network model. – Water Resource Research, vol.45, No.2, DOI: 10.1029/2007WR006641.
 
22.
Nsir K. and Schäfer G. (2010): A pore-throat model based on grain-size distribution to quantify gravity-dominated DNAPL instabilities in a water saturated homogeneous porous medium. – Comptes Rendus Geoscience, vol.342, pp.881-891.
 
23.
Held R.J. and Celia M.A (2001): Modeling support of functional relationships between capillary pressure, saturation, interfacial area and common lines. – Adv. Water Res., vol.24, pp.325-343.
 
24.
Hilpert M., Miller C.T. and Gray W.G. (2003): Stability of a fluid-fluid interface in a biconical pore segment. – J. Call. Interface Sci., vol.267, pp.397-407.
 
25.
Acharya R.C., van der Zee S.E.A.T.M. and Leijense A. (2004): Porosity-permeability properties generated with a new 2-parameter 3D hydraulic pore-network model for consolidated and unconsolidated porous media. – Adv. Water Res., vol.27, pp.707-723.
 
26.
Walicki E., Walicka A. Michalski D. and Ratajczak P. (1998): Approximate analysis for conical flow of generalized second grade fluid. – Les Cahiers de Rhéologie, vol.16, No.1, pp.309-316.
 
27.
Walicki E. and Walicka A. (2000): Pressure drops in a wedge flow of generalized second grade fluids of a powerlaw type and a Bingham type. – Les Cahiers de Rhéologie, vol.17, No.1, pp.541-550.
 
28.
Walicki E. and Walicka A. (2000): Conical flow of generalized second grade fluids. – Chem. Proc. Eng., vol.21, No.1, pp.75-85.
 
29.
Walicki E. and Walicka A. (2002): Convergent flows of molten polymers modeled by generalized second-grade fluids of a power type. – Mech. Comp. Mat., vol.38, No.1, pp.89-94.
 
30.
Walicka A. and Walicki E. (2010): Pressure drops in convergent flows of polymer melts. – Int. J. Appl. Mech. Eng., vol.15, No.4, pp.1273-1285.
 
31.
Sochi T. (2010): The flow of Newtonian fluids in axisymmetric corrugated tubes. – arXiv:1006.1515v1.
 
32.
Sochi T. (2011): Newtonian flow in converging-diverging capillares. – arXiv:1108.0163v1.
 
33.
Sochi T. (2011): The flow of power-law fluids in axisymmetric corrugated tubes. – J. Petrol. Sci. Eng., vol.78, pp.582-585.
 
34.
Sochi T. (2015): Navier-Stokes flow in converging-diverging distensible tubes. – Alexandria Eng. J., vol.54, pp.713-723.
 
35.
Walicka A. (2018): Flows of Newtonian and power-law fluids in symmetrically corrugated capillary fissures and tubes. – Int. J. Appl. Mech. Eng., vol.23, No.1, pp.187-211.
 
36.
Walicka A. (2018): Simulation of the flow through porous layers composed of converging-diverging capillary fissures or tubes. – Int. J. Appl. Mech. Eng., vol.23, No.1, pp.161-185.
 
37.
Vossoughi S. (1999): Flow of non-Newtonian fluids in porous media. – In: Advances in the Flow and Rheology of Non-Newtonian Fluids, Elsevier, New York, pp.1183-1235.
 
38.
Pearson J.R.A. and Tardy P.M.J. (2002): Models for flow of non-Newtonian and complex fluids through porous media. – J. Non-Newt. Fluid Mech., vol.102, pp.447-473.
 
39.
Perrin C.L., Tardy P.M.J., Sorbie K.S. and Crawshaw J.C. (2006): Experimental and modelling study of Newtonian and non-Newtonian fluid flow in pore network micromodels. – J. Colloid. Interface Sci., vol.295, pp.542-550.
 
40.
Vossoughi S. and Al-Husaini O.S. (1994): Rheological characterisation of the coal/oil/water slurries and the effect of polymer. – 19 th international Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida, USA, pp.115-122.
 
41.
DeHaven E.S (1953): Control valve design for viscous pseudoplastic fluids. – JEC Equipment and Design, vol.51, No.7, pp.63A-66A.
 
42.
DeHaven E.S (1959): Extruder design for pseudoplastic fluids. – Ind. Eng. Chem., vol.51, No.7, pp.813-816.
 
43.
Walicka A. (2017): Rheology of Fluids in Mechanical Engineering. – Zielona Gora: University Press.
 
44.
Gradshteyn I.S and Ryzhik I.M. (2014): Tables of Integrals, Series and Products, 8th ed. – Orlando, Florida: Academic Press.
 
45.
Wolfram: Mathematica 10. – Wolfram Res. Ing.
 
46.
Olver F.W.J., Lozier D.W., Boisvert R.F. and Clark C.W. (2010): NIST Handbook of Mathematical Functions. – NIST & Cambridge University Press.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top