ORIGINAL PAPER
Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Cappilary Fissures and Tubes
 
 
 
More details
Hide details
1
University of Zielona Góra, Faculty of Mechanical Engineering ul. Szafrana 4, 65-516 , Zielona Góra, Poland
 
 
Online publication date: 2018-03-14
 
 
Publication date: 2018-02-01
 
 
International Journal of Applied Mechanics and Engineering 2018;23(1):187-211
 
KEYWORDS
ABSTRACT
In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.
REFERENCES (24)
1.
Bird R.B., Steward W.F. and Lightfoot E.N. (1960): Transport Phenomena. - New York: Wiley.
 
2.
Lahbabi A. and Chang H.-C. (1986): Flow in periodically constricted tubes: transition to inertial and nonsteady flows. - Chem. Eng. Sci., vol.41, No.10, pp. 2487-2505.
 
3.
Burdette S.R., Coates P.J, Armstrong R.C. and Brown R.A. (1989): Calculations of viscoelastic flow through an axisymmetric corrugated tube using the explicity elliptic momentum equation formulation (EEME). - J. Non- Newtonian Fluid Mech., vol.33, No.1, pp.1-23.
 
4.
James D.F., Phan-Thien N., Khan M.M.K., Beris A.N. and Pilitsis S. (1990): Flow of test fluid M1 in corrugated tubes. - J. Non-Newtonian Fluid Mech., vol.35, No.2-3, pp.405-412.
 
5.
Momeni-Masuleh S.H. and Phillips T.N. (2004): Viscoelastic flow in an undulating tube using spectral methods. - Comput. Fluids, vol.33, No.8, pp.1075-1095.
 
6.
Wang Y., Hayat T., Ali N. and Oberlack M. (2008): Magnetohydrodynamic peristaltic motion of a Sisko fluid in a symmetric or asymmetric channel. - Physica A, vol.387, pp.347-362.
 
7.
Hayat T., Maqbool K. and Asghar S. (2009): Hall and heat transfer effects on the steady flow of a Sisko fluid. - Z. Naturforsch. vol.64a, No.769-782.
 
8.
Hayat T., Moitsheki R.J. and Abelman S. (2010): Stokes’ first problem for Sisko fluid over a porous wall. - Appl. Math. Comp., vol.217, No.2, pp.622-628.
 
9.
Mekheimer Kh.S. and El Kot M.A. (2012): Mathematical modelling of unsteady flow of a Sisko fluid through an anisotropically tapered elastic arteries with time-variant overlapping stenosis. - Appl. Math. Modelling. vol.36, No.11, pp.5393-5407.
 
10.
Nadeem S., Sadaf H. and Akbar N.S. (2015): Effects of nanoparticles on the peristaltic motion of tangent hyperbolic fluid model in an annulus. - Alexandria Eng. J., vol.54, pp.843-851.
 
11.
Williams E.W. and Javadpour S.H. (1980): The flow of an elastico-viscous liquid in an axisymmetric pipe of slowly varying cross-section. - J. Non-Newtonian Fluid Mech., vol.7, No.2-3, pp.171-188.
 
12.
Walicki E., Walicka A. Michalski D. and Ratajczak P. (1998): Approximate analysis for conical flow of generalized second grade fluid. - Les Cahiers de Rhéologie, vol.16, No.1, pp.309-316.
 
13.
Walicki E. and Walicka A. (2000): Pressure drops in a wedge flow of generalized second grade fluids of a powerlaw type and a Bingham type. - Les Cahiers de Rhéologie, vol.17, No.1, pp.541-550.
 
14.
Walicki E. and Walicka A. (2000): Conical flow of generalized second grade fluids. - Chem. Proc. Eng., vol.21, No.1, pp.75-85.
 
15.
Walicki E. and Walicka A. (2002): Convergent flows of molten polymers modeled by generalized second-grade fluids of a power type. - Mech. Comp. Mat., vol.38, No.1, pp.89-94.
 
16.
Walicka A. and Walicki E. (2010): Pressure drops in convergent flows of polymer melts. - Int. J. Appl. Mech. Eng., vol.15, No.4, pp.1273-1285.
 
17.
Sochi T. (2010): The flow of Newtonian fluids in axisymmetric corrugated tubes. - arXiv:1006.1515v1.
 
18.
Sochi T. (2011): Newtonian flow in converging-diverging capillares. - arXiv:1108.0163v1.
 
19.
Sochi T. (2011): The flow of power-law fluids in axisymmetric corrugated tubes. - J. Petrol. Sci. Eng., vol.78, pp.582-585.
 
20.
Sochi T. (2015): Navier-Stokes flow in converging-diverging distensible tubes. - Alexandria Eng. J., vol.54, pp.713-723.
 
21.
Walicka A. (2017): Rheology of Fluids in Mechanical Engineering. - Zielona Gora: University Press.
 
22.
Gradshteyn I.S and Ryzhik I.M. (2014): Tables of Integrals, Series and Products, 8th ed. - Orlando, Florida: Academic Press.
 
23.
Wolfram: Mathematica 10. - Wolfram Res. Ing.
 
24.
Olver F.W.J., Lozier D.W., Boisvert R.F. and Clark C.W. (2010): NIST Handbook of Mathematical Functions. - NIST & Cambridge University Press.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top