ORIGINAL PAPER
Fourth Order Nonlinear Evolution Equation For Interfacial Gravity Waves In The Presence Of Air Flowing Over Water And A Basic Current Shear
,
 
 
 
 
More details
Hide details
1
Department of Mathematics, Bengal Engineering and Science University, Shibpur, P.O. Botanic Garden, Shibpur, Howrah - 711103, West Bengal, INDIA
 
 
Online publication date: 2015-09-19
 
 
Publication date: 2015-08-01
 
 
International Journal of Applied Mechanics and Engineering 2015;20(3):517-530
 
KEYWORDS
ABSTRACT
A fourth order nonlinear evolution equation, which is a good starting point for the study of nonlinear water waves as first pointed out by Dysthe (1979) is derived for gravity waves propagating at the interface of two superposed fluids of infinite depth in the presence of air flowing over water and a basic current shear. A stability analysis is then made for a uniform Stokes gravity wave train. Graphs are plotted for the maximum growth rate of instability and for wave number at marginal stability against wave steepness for different values of air flow velocity and basic current shears. Significant deviations are noticed from the results obtained from the third order evolution equation, which is the nonlinear Schrödinger equation.
REFERENCES (20)
1.
Benjamin T.B. and Feir J.E. (1967): The disintegration of wave trains on deep water, I. – Theory. J. Fluid Mech., vol.27, pp.417-430.
 
2.
Brinch-Nielsen U. and Jonsson J.G. (1986): Fourth order evolution equations and stability analysis for Stokes waves on arbitrary water depth. – Wave Motion, vol.8, pp.455-472.
 
3.
Davey A. and Stewartson K. (1974): On three dimensional packets of surface waves. – Proc. R. Soc. Lond., vol.A 338, pp.101-110.
 
4.
Dhar A.K. and Das K.P. (1991): Stability of small but finite amplitude interfacial waves. – Mechanics Research Communications, vol.18, No.6, pp.367-372.
 
5.
Dhar A.K. and Das K.P. (1999): A fourth order evolution equation for capillary gravity waves including the effects of wind input and shear in the water current. – Applied Mechanics and Engineering, vol.4, No.1, pp.5-24.
 
6.
Dhar A.K. and Das K.P. (2001): The effect of randomness on stability of surface gravity waves from fourth order nonlinear evolution equation. – Int. J. of Applied Mechanics and Engineering, vol.6, No.1, pp.11-34.
 
7.
Dungey J.C. and Hui W.H. (1979): Nonlinear energy transfer in a narrow gravity-wave spectrum. – Proc. R. Soc. Lond., vol.A 368, pp.239-265.
 
8.
Dysthe K.B. (1979): Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. – Proc. R. Soc. Lond., vol.A 369, pp.105-114.
 
9.
Grimshaw R.H.J. and Pullin D.I. (1985): Stability of finite amplitude interfacial waves. Part 1. Modulational instability for small amplitude waves. – J. Fluid Mech., vol.160, pp.297-315.
 
10.
Hasimoto H. and Ono H. (1972): Nonlinear modulation of gravity waves. – J. Phys. Soc. Japan, vol.33, No.3, pp.805-811.
 
11.
Hogan S.J. (1985): The fourth order evolution equation for deep water gravity capillary waves. – Proc. R. Soc. Lond., vol.A 402, pp.359-372.
 
12.
Janssen P.A.E.M. (1983): On fourth order evolution equation for deep water waves. – J. Fluid Mech., vol.126, pp.1-11.
 
13.
Longuet-Higgins M.S. (1978): The instabilities of gravity waves of finite amplitude in deep water, I. Super Harmonics. – Proc. R. Soc. Lond., vol.A 360, pp.471-488.
 
14.
Longuet-Higgins M.S. (1978): The instabilities of gravity waves of finite amplitude in deep water, II. Sub Harmonics. Proc. R. Soc. Lond., vol.A, 360, pp.489-506.
 
15.
Majumder D.P. and Dhar A.K. (2011): Stability of small but finite amplitude interfacial capillary gravity waves for perturbations in two horizontal directions. – International Journal of Applied Mechanics and Engineering, vol.16, No.2, pp.425-434.
 
16.
McLean J.W., Ma Y.C., Martin D.U., Saffman P.G. and Yuen H.C. (1981): Three dimensional instability of finite amplitude water waves. – Phys. Rev. Lett., vol.46, pp.817-820.
 
17.
Pullin D.I. and Grimshaw R.H.J. (1986): Stability of finite amplitude interfacial waves. Part 3. The effect of basic current shear for one dimensional instabilities. – J. Fluid Mech., vol.172, pp.277-306.
 
18.
Pullin D.I. and Grimshaw R.H.J. (1985): Stability of finite amplitude interfacial waves. Part 2. Numerical results. – J. Fluid Mech., vol.160, pp.317-336.
 
19.
Stiassnie M. (1984): Note on the modified nonlinear Schrödinger equation for deep water waves. – Wave Motion, vol.6, pp.431-433.
 
20.
Yuen H.C. (1984): Non linear dynamics of interfacial waves. – Physica 12D, pp.71-82.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top