ORIGINAL PAPER
Fourth order computational spline method for two-parameter singularly perturbed boundary value problem
 
More details
Hide details
1
Department of Mathematics, University College of Science, Osmania University, Hyderabad, INDIA
 
2
Kavikulguru Institute of Technology and Science, Ramtek, Nagpur, Maharashtra, INDIA
 
 
Online publication date: 2023-12-19
 
 
Publication date: 2023-12-23
 
 
Corresponding author
Phaneendra KOLLOJU   

Department of Mathematics, University College of Science, Osmania University, Hyderabad, INDIA
 
 
International Journal of Applied Mechanics and Engineering 2023;28(4):79-93
 
KEYWORDS
ABSTRACT
The current research work considers a two-parameter singularly perturbed two-point boundary value problem. Here, we suggest a computational scheme derived by using an exponential spline for the numerical solution of the problem on a uniform mesh. The proposed numerical scheme is analyzed for convergence and an accuracy of O(h4) is achieved. Numerical experiments are considered to validate the efficiency of the spline method, and compared comparison with the existing method to prove the superiority of the proposed scheme.
 
REFERENCES (19)
1.
Bigge J. and Bohl E. (1985): Deformations of the bifurcation diagram due to discretization.– Math. Comp., vol.45, No.172, pp.393-403.
 
2.
Bohl E. (1981): Finite Modele Gewohnlicher Randwertaufgaben.– Teubner, Stuttgart.
 
3.
Chen J and O'Malley R.E. (1974): On the asymptotic solution of a two-parameter boundary value problem of chemical reactor theory.– SIAM J. Appl. Math., vol.26, No.4, pp.717-729.
 
4.
O'Malley R.E. (1991): Singular Perturbation Methods for Ordinary Differential Equations.– Springer Verlag, New York.
 
5.
O'Malley R.E.Jr. (1967): Two-parameter singular perturbation problems for second order equations.– J. Math. Mech., vol.16, No.10, pp.1143-1164.
 
6.
Bender C.M. and Orszag S.A. (1978): Advanced Mathematical Methods for Scientists and Engineers.– McGraw-Hill, New York.
 
7.
Doolan E.P., Miller J.J.H. and Schilders W.H.A. ( 1980): Uniform Numerical Methods for Problems with Initial and Boundary Layers.– Boole Press, Dublin.
 
8.
Miller J.J.H., O'Riordan E. and Shishkin G.I. (1996): Fitted Numerical Methods for Singular Perturbation Problems.– World Scientific, River Edge, NJ.
 
9.
Kadalbajoo M.K. and Jha A. (2013): A posteriori error analysis for defect correction method for two parameter singular perturbation problems.– J. Appl. Math. Comput., vol.42, No.1-2, pp.421-440.
 
10.
Linß T and Roos H-G. (2004): Analysis of a finite-difference scheme for a singularly perturbed problem with two small parameters.– J. Math. Anal. Appl., vol.289, No.2, pp.355-366.
 
11.
Kadalbajoo M.K. and Yadaw A.S. (2008): B-Spline collocation method for a two parameter singularly perturbed convection-diffusion boundary value problems.– Appl. Math. and Comput., vol.201, No.1-2, pp.504-513.
 
12.
Linß T. (2010): A posteriori error estimation for a singularly perturbed problem with two small parameters.– International Journal of Numerical Analysis and Modeling, vol.7, No.3, pp.491-506.
 
13.
Gracia J.L., O'Riordan E. and Pickett M.L. (2006): A parameter robust second order numerical method for a singularly perturbed two-parameter problem.– Applied Numerical Mathematics, vol.56, No.7, pp.962-980.
 
14.
Zahra W.K., Ashraf M and Mhlawy E.L. (2013): Numerical solution of two parameter singularly perturbed boundary value problems via exponential spline.– Journal of King Saud University-Science, vol.25, No.3, pp. 201-208.
 
15.
Kumar D., Yadaw A.S and Kadalbajoo M.K. (2013): A parameter -uniform method for two parameters singularly perturbed boundary value problems via asymptotic expansion.– Appl. Math. Inf. Sci., vol.7, No.4, pp. 1525-1532.
 
16.
Varga R.S. (1962): Matrix Iterative Analysis.– Prentice-Hall, Englewood Cliffs.
 
17.
Young D.M. (1971): Iterative Solutions of Large Linear Systems.– New York, Academic press.
 
18.
Kadalbajoo M.K. and Yadaw A.S. (2009): Parameter-uniform Ritz-Galerkin finite element method for a two-parameter singularly perturbed boundary value problems.– International Journal of Pure and Applied Mathematics, vol.55, No.2, pp.287-300.
 
19.
Pandit S. and Kumar M. (2014): Haar wavelet approach for numerical solution of two parameters singularly perturbed boundary value problems.– Applied Mathematics and Information Sciences, vol.8, No.6, pp.2965-2974.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top