ORIGINAL PAPER
Free Vibration Analysis Of Isotropic Rectangular Plates On Winkler Foundation Using Differential Transform Method
 
 
 
More details
Hide details
1
Department of Mathematics M.K. Government Degree College Ninowa Farrukhabad-209 602, Uttar Pradesh, INDIA
 
 
Online publication date: 2013-06-08
 
 
Publication date: 2013-06-01
 
 
International Journal of Applied Mechanics and Engineering 2013;18(2):589-597
 
KEYWORDS
ABSTRACT
A differential transform method (DTM) is used to analyze free transverse vibrations of isotropic rectangular plates resting on a Winkler foundation. Two opposite edges of the plates are assumed to be simply supported. This semi-numerical-analytical technique converts the governing differential equation and boundary conditions into algebraic equations. Characteristic equations are obtained for three combinations of clamped, simply supported and free edge conditions on the other two edges, keeping one of them to be simply supported. Numerical results show the robustness and fast convergence of the method. Correctness of the results is shown by comparing with those obtained using other methods.
 
REFERENCES (15)
1.
Arikoglu A. and Ozcol I. (2005): Solution of boundary value problems for integro-differential equation by using differential transform method. - Appl. Math. Comp., vol.168, pp.1145-1158.
 
2.
Attarnejad R., Shabha A. and Semnani S.J. (2010): Application of differential transform in free vibration analysis of Timoshenko beams resting on two- parameter elastic foundation. - The Arabian J. Sci. Eng., vol.35(2B), pp.125-132.
 
3.
Bambill D.V., Rossit C.A., Laurra P.A.A. and Rossit R.E. (2000): Transverse vibrations of an orthotropic rectangular plate of linearly varying thickness and with a free edge. - J. Sound Vib., vol.235(3), pp.530-538.
 
4.
Bhat R.B., Laura P.A.A., Gutierrez R.G., Cortinez V.H. and Sanzi V.H. (1990): Numerical experiment on the determination of natural frequencies of transverse vibrations of rectangular plates of non-uniform thickness. - J.
 
5.
Sound Vib., vol.138, pp.205-219.
 
6.
Chen J.T., Chen I.L., Lee Y.T. and Yeh Y.T. (2004): A meshless method for free vibration analysis of circular and rectangular clamped plates using radial basis function. - Eng. Analysis with Boundary Elements, vol.28, No.5, pp.535-545.
 
7.
Gorman D.J. (2000): Free vibration analysis of completely free rectangular plates by the Superposition-Galerkin method. - J. Sound Vib., vol.237(5), pp.901-914.
 
8.
Kacar A., Tan H.T. and Kaya M.O. (2011): Free vibration analysis of beams on variable elastic foundation by using the differential transform method. - Mathematical Compu. Applications, vol.16(3), pp.773-783.
 
9.
Malik M. and Allali M. (2000): Characteristic equations of rectangular plates by differential transform method. - J. Sound Vib., vol.233(2), pp.359-366.
 
10.
Omer C., Armagan K. and Cigdem D. (2010): Discrete singular convolution approach for buckling analysis of rectangular Kirchoff plates subjected to compressive loads on two opposite edges. - Adv. Eng. Software, vol.41, pp.557-560.
 
11.
Venkateswara R.G., Prakash R.B. and Raju I.S. (1974): Vibrations of inhomogeneous thin plates using a high precision triangular element. - J. Sound Vib., vol.34(3), pp.444-445.
 
12.
Wang X., Gan L. and Wang Y. (2006): A differential quadrature analysis of vibration and buckling of an SS-C-SS-C rectangular plate loaded by linearly varying in-plane stress. - J. Sound Vib., vol.298, pp.420-431.
 
13.
Yajuvindra Kumar and Lal R. (2011): Vibrations of nonhomogeneous orthotropic rectangular plates with bilinear thickness variation resting on Winkler foundation. - Meccanica, DOI:10.1007/s11012-011-9459-4.
 
14.
Yalcin H.S., Arikoglu A. and Ozcol I. (2000): Free vibration analysis of circular plates by differential transform method. - Appl. Math. Comp., vol.212, pp.377-386.
 
15.
Zhou J.K. (1986): Differential transformation and its application for electrical circuits (in Chinese). - Wuhan, P.R. China: Huazhong University Press.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top