ORIGINAL PAPER
Frictionless Contact Between a Rigid Indentor and a Transversely Isotropic Functionally Graded Layer
,
 
,
 
 
 
More details
Hide details
1
Department of Mathematics, Hooghly Engineering and Technology College, Vivekananda Road, Hooghly-, 712103, India
 
2
Department of Mathematics, Gobardanga Hindu College, 24-Parganas (N), Pin-, 743273, India
 
3
Department of Applied Mathematics, University of Calcutta, 92, A. P. C. Road, Kolkata-, 700009, India
 
 
Online publication date: 2018-08-20
 
 
Publication date: 2018-08-01
 
 
International Journal of Applied Mechanics and Engineering 2018;23(3):655-671
 
KEYWORDS
ABSTRACT
This article is concerned with the study of frictionless contact between a rigid punch and a transversely isotropic functionally graded layer. The rigid punch is assumed to be axially symmetric and is supposed to be pressing the layer by an applied concentrated load. The layer is resting on a rigid base and is assumed to be sufficiently thick in comparison with the amount of indentation by the rigid punch. The graded layer is modeled as a non-homogeneous medium. The relationship between the applied load P and the contact area is obtained by solving the mathematically formulated problem through using the Hankel transform of different order. Numerical results have been presented to assess the effects of functional grading of the medium and the applied load on the stress distribution in the layer as well as on the relationship between the applied load and the area of contact.
 
REFERENCES (36)
1.
Hertz H. (1882): On the contact of rigid elastic solids. – J. Reine and Angewandte Mathematik, vol.92, pp.156-171.
 
2.
Johnson K.L. (1985): Contact Mechanics. – Cambridge: Cambridge University Press.
 
3.
Gladwell M.L. (1980): Contact Problems in the Classical Theory of Elasticity. – Sijthoff and Noordhoff, The Netherlands.
 
4.
Hills D.A. and Nowell D. (1993): Sackfield A. Mechanics of Elastic Contacts. – Butterworth Heinemann.
 
5.
Raous M., Jean M. and Moreau J.J. (1995): Contact Mechanics. – New York: Plenum Press.
 
6.
Barik S.P., Kanoria M. and Chaudhuri P.K. (2006): Contact problem for an anisotropic elastic layer lying on an anisotropic elastic foundation under gravity. – J. Ind. Acad. Math., vol.28, pp.205-223.
 
7.
Barik S.P., Kanoria M. and Chaudhuri P.K. (2008): Effect of nonhogeniety on the contact of an isotropic half-space and a rigid base with an axially symmetric reces. – J. Mech. Materials and Struc., vol.3, pp.1-18.
 
8.
Barik S.P., Kanoria M. and Chaudhuri P.K. (2009): Frictionless contact of a functionally graded half-space and a rigid base with an axially symmetric recess. – J. Mech., vol.25, pp.9-18.
 
9.
Chaudhuri P.K. and Ray S. (2003): Receding axisymmetric contact between a transversely isotropic layer and a transversely isotropic half-space. – Bull. Cal. Math. Soc., vol.95, pp.151-164.
 
10.
Comez I. (2013): Contact problem of a functionally graded layer resting on a Winkler foundation. – Act. Mech., vol.224, pp.2833-2843.
 
11.
Comez I., El-Borgi S., Kahya V. and Erdöl R. (2016): Receding contact problem for two-layer functionally graded media indented by a rigid punch. – Acta. Mech., vol. 227, pp.2493-2504.
 
12.
Gecit M.R. (1981): Axisymmetric contact problem for an elastic layer and an elastic foundation. – Int. J. Engg. Sci., vol.19, pp.747-755.
 
13.
Fabrikant V.I. (2006): Elementary solution of contact problems for a transversely isotropic layer bonded to a rigid foundation. – Z. Angew. Math.Phys., vol.57, pp.464-490.
 
14.
Kit G.S. and Monastyrsky B.E. (2001): A contact problem for a half-space and a rigid base with an axially symmetric recess. – J. Mathematical Sci., vol.107, pp.3545-3549.
 
15.
Ke L.L., Yang J., Kitipornchai S. and Wang Y.S. (2008): Frictionless contact analysis of a functionally graded piezoelectric layered half-plane. – Smart Mater. Struc., vol.17, pp.025003.
 
16.
Ke L.L and Wang Y.S. (2007): Two dimensional sliding frictional contact of a functionally graded materials. – European J. Mech. A/Solids., vol.26, pp.171-188.
 
17.
Ke L.L., Yang J., Kitipornchai S. and Wang Y.S. (2008): Electro-mechanical frictionless contact behavior of a functionally graded piezoelectric layered half-plane under a rigid punch. – Int. J. Solids Struc., vol.4, pp.3313- 3333.
 
18.
Ke L.L., Yang J., Kitipornchai S. and Wang Y.S. (2010): Sliding frictional contact analysis of functionally graded piezoelectric layered half-plane. – Acta Mech., vol.209, pp.249-268.
 
19.
Nowacki W. (1973): Theory of Elasticity. – Warsaw: PWN.
 
20.
Birinci A. and Erdol R. (1999): Frictionless contact between a rigid stamp and an elastic layered composite resting on simple supports. – Math. and Comp. Appl., vol.4, pp.261-272.
 
21.
El-Borgi S., Abdelmoula R. and Keer L. (2006): A receding contact plane problem between a functionally graded layer and a homogeneous substrate. – Int. J. Solids and Struc., vol.43, pp.658-674.
 
22.
El-Borgi S., Usman S. and Guler M.A. (2014): A frictional receding contact plane problem between a functionally graded layer and a homogeneous substrate. – Int. J. Solids Struc., vol.51, pp.4462-4476.
 
23.
Patra R., Barik S.P., Kundu M. and Chauaudhuri P.K. (2014): Plane Elastostatic Solution in an Infinite Functionally Graded Layer Weakened by a Crack Lying in the Middle of the Layer. – Int. J. Computational Math., vol.2014, Article ID 358617.
 
24.
Patra R., Barik S.P. and Chaudhuri P.K. (2016): Frictionless contact of a rigid punch indenting a transversely isotropic elastic layer. – Int. J. Adv. Appl. Math. and Mech., vol.3, pp.100-111.
 
25.
Jing L., Ke L.L., Wang Y.S., Yang J. and Alam F. (2012): Thermoelastic frictional contact of functionally graded materials with arbitrarily varying properties. – Int. J. Mech. Sci., vol.63, pp.86-98.
 
26.
Yan J. and Li X. (2015): Double receding contact plane problem between a functionally graded layer and an elastic layer. – European J. Mech. A/Solids., vol.53, pp.143-150.
 
27.
Adiyaman G., Birinci A. and Öner E. (2016): A receding contact problem between a functionally graded layer and two homogeneous quarter planes. – Acta. Mech., vol.227, pp.1753-1766.
 
28.
Jie S. and Liao-Liang Yue-Sheng K.W. (2016): Axisymmetric frictionless contact of a functionally graded piezoelectric layered half-space under a conducting punch. – Int. J. Solids Struc., vol.90, pp.45-59.
 
29.
Giannakopoulos A.E. and Suresh S. (1997): Indentation of solids with gradients in elastic properties: part I. Point force solution. – Int. J. Solids Struc., vol.34, pp.2357-2392.
 
30.
Giannakopoulos A.E. and Suresh S. (1997): Indentation of solids with gradients in elastic properties: part II. Axisymmetric indentors. – Int. J. Solids Struc., vol.34, pp.2393-2428.
 
31.
Suresh S. (2001): Graded materials for resistance to contact deformation and damage. – Science, vol.292, pp.2447-2451.
 
32.
Yamanouchi M., Koizumi M. and Shiota (Eds) I. (1990): Proceedings of the 1st international symposium on functionally gradient materials. -Functionally gradient materials forum and the society of non-traditional technology. – Japan.
 
33.
Koizumi M. (1993): Concept of FGM. – Ceramic Trans., vol.34, pp.3-10.
 
34.
Lekhnistkii S.G. (1981): Theory of Elasticity of an Anisotropic Body. – Moscow: Mir Publishers.
 
35.
Freund L.B. and Suresh S. (2003): Thin Film Materials. – CUP.
 
36.
Gradshteyn I.S. and Ryzhik I.M. (1963): Table of Integrals, Series and Products. – Academic Press.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top