ORIGINAL PAPER
Heat Transfer of Viscoelastic Fluid Flow due to Nonlinear Stretching Sheet with Internal Heat Source
 
More details
Hide details
1
Department of PG and UG Studies in Mathematics Government College Gulbarga-585105, Karnataka, INDIA
 
2
Department of Mathematics Gulbarga University Gulbarga, Karnataka, INDIA
 
3
Department of Mathematics Singhania University Pachauri Bari-333515, Rajasthan, INDIA
 
 
Online publication date: 2013-09-06
 
 
Publication date: 2013-08-01
 
 
International Journal of Applied Mechanics and Engineering 2013;18(3):739-760
 
KEYWORDS
ABSTRACT
In the present paper, a viscoelastic boundary layer flow and heat transfer over an exponentially stretching continuous sheet in the presence of a heat source/sink has been examined. Loss of energy due to viscous dissipation of the non-Newtonian fluid has been taken into account in this study. Approximate analytical local similar solutions of the highly non-linear momentum equation are obtained for velocity distribution by transforming the equation into Riccati-type and then solving this sequentially. Accuracy of the zero-order analytical solutions for the stream function and velocity are verified by numerical solutions obtained by employing the Runge-Kutta fourth order method involving shooting. Similarity solutions of the temperature equation for non-isothermal boundary conditions are obtained in the form of confluent hypergeometric functions. The effect of various physical parameters on the local skin-friction coefficient and heat transfer characteristics are discussed in detail. It is seen that the rate of heat transfer from the stretching sheet to the fluid can be controlled by suitably choosing the values of the Prandtl number Pr and local Eckert number E, local viscioelastic parameter k*1 and local heat source/ sink parameter β*
 
REFERENCES (30)
1.
Abramowitz M. and Stegun L.A. (1972): Handbook of Mathematical Functions. - National Bureau of Standards/Amer Math Soc. 55, Providence, RI.
 
2.
Ali M.E. (1995): On thermal boundary layer on a power law stretched surface with suction or injection. - Int. J. Heat Mass Flow, vol.16, pp.280-290.
 
3.
Andersson H.I. (1992): MHD flow of a viscoelastic fluid past a stretching surface. - Acta. Mech., vol.95, pp.227-230.
 
4.
Chang W.D. (1989): The non-uniqueness of the flow of a viscoelastic fluid over a stretching sheet. - Quart. Appl. Math., vol.47, 2, pp.365-366.
 
5.
Char M.I. (1994): Heat and mass transfer in a hydromagnetic flow of viscoelastic fluid over a stretching sheet. - J. of Math. Anal. Appl., vol.186, pp.674-689.
 
6.
Coleman B.D. and Noll W. (1990): An approximation theorem for functionals with applications in continuum mechanics. - Arch. Rat. Mech. Anal., vol.6, pp.355.
 
7.
Cortell R. (1994): Similarity solutions for flow and heat transfer of a viscoelastic fluid over a stretching sheet. - Int. J. Non-Linear Mechanics., vol.29 2, pp.155-161.
 
8.
Cortell R. (2005): Flow and heat transfer of a fluid through porous medium over a stretching sheet with internal heat generation/absorption and suction/blowing. - Fluid. Dyn. Res., vol.37, pp.231-245.
 
9.
Cortell R. (2006): A note on flow and heat transfer of a viscoelastic liquid over a stretching sheet. - Int. J. Non. Lin. Mech., vol.41, pp.78-85.
 
10.
Crane L.J (1970): Flow past a stretching plate. - ZAMP., vol.21, pp.645-647.
 
11.
Dandapat B.S and Gupta A.S. (1989): Flow and heat transfer in a viscoelastic fluid over a stretching sheet. - Int. J. Non-Linear Mech., vol.24, 3, pp.215-219.
 
12.
Dandapat B.S., Holmedal L.E. and Andersson H.I. (1994): Stability of a viscoelastic fluid over a stretching sheet. - Arch. Mech., vol.46 (6), pp.829-838.
 
13.
Elbashbeshy E.M.A. (2001): Heat transfer over an exponentially stretching continuous surface with suction. - Arch. Mech., vol.53, (6), pp.643-651.
 
14.
Fosdick R.L. and Rajagopal K.R. (1979): Anomalous features in the model of second order fluids. - Arch. Ration. Mech. Anal., vol.70, pp.145-152.
 
15.
Gupta P.S and Gupta A.S. (1977): Heat and mass transfer on a stretching sheet with suction or blowing. - Canad. J. of Chem. Engg., vol.55, pp.744-746.
 
16.
Khan S.K. (?): Sequential similarity solution of boundary layer equation arising in viscoelastic fluid flow over an exponential stretching sheet. - Proceedings of the International Symposium on Recent Advances in Fluid Mechanics (Tata Mc.Graw-Hill Publication), pp.225-233.
 
17.
Khan S.K. and Sanjayanand E. (2004): Viscoelastic boundary layer MHD flow through a porous medium over a porous quadratic stretching sheet. - Arch. Mech., vol.56 (3), pp.191-206.
 
18.
Khan S.K. and Sanjayanand. E. (2005): Viscoelastic boundary layer flow and heat transfer over an exponential stretching sheet. - Int. J. Heat and Mass Transfer., vol.48, pp.1534-1542.
 
19.
Kumaran V. and Ramanaiah G. (1996 ): A note on the flow over a stretching sheet. - Acta Mech ., vol.116, pp.229-233.
 
20.
Lawrence P.S. and Rao B.N. (1992): Heat transfer in the flow of viscoelastic fluid over a stretching sheet. - Acta. Mech. vol.93, pp.53-61.
 
21.
Mahaparta T.R. and Gupta A.S. (2004): Stagnation-point flow of a viscoelastic fluid toward a stretching surface. - Inter. J. of Non-Linear Mech., vol.39, pp.811-820.
 
22.
Prasad K.V., Subhas A.M. and Khan S.K. (2000): Momentum and heat transfer in viscoelastic fluid flow in a porous medium over a non-isothermal stretching sheet. - International Journal of Numerical Methods for Heat and Fluid Flow., vol. 10 (8), pp.786-801.
 
23.
Prasad K.V., Subhas A.M., Khan S.K. and Datti P.S. (2002), Non-Dracy forced convective heat transfer in a viscoelastic fluid flow over a non-isothermal stretching sheet. - J. Porous Media., vol.5(1), pp.41-47.
 
24.
Rajagopal K.R., Na T.Y. and Gupta A.S. (1984): Flow of viscoelastic fluid over a stretching sheet. - Rheol. Acta., vol.23, pp.213-215.
 
25.
Rajagopal K.R., Na T.Y. and Gupta A.S. (1987): A non similar boundary layer on a stretching sheet in a non-Newtonian fluid with uniform free stream. - J. Math. Phy. Sc ., vol.21, 2, pp.189-200.
 
26.
Rollins D. and Vajravelu K. (1991): Heat transfer in a second order fluid over a continuous stretching surface. - Acta. Mech., vol.89, pp.167-178.
 
27.
Sakiadis B.C. (1961): Boundary layer behaviour on continuous solid surfaces: 1. Boundary layer equations for two dimensional and axisymmetric flows. - A.I.Ch. E.J., vol.7, pp.26-28.
 
28.
Sanjayanand E. and Khan S.K. (2006): On heat and mass transfer in a viscoelastic boundary layer flow over an exponentially stretching sheet. - Int. J. Therm. Sci., vol.45, pp.819-828.
 
29.
Troy W.C., Overman E.A.H., Ermentrout G.B. and Keener J.P. (1987): Uniqueness of flow of a second order fluid past a stretching sheet. - Quart. Appl. Math., vol.44, 4, pp.753 -755.
 
30.
Vajravelu K. (1994): Flow and heat transfer in a saturated porous medium over a stretching surface. - ZAMM, vol.74, 12, pp.605-614.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top