ORIGINAL PAPER
Hydromagnetic Rarefied Fluid Flow over a Wedge in the Presence of Surface Slip and Thermal Radiation
K. Das 1
,
 
,
 
 
 
 
More details
Hide details
1
Department of Mathematics, A.B.N. Seal College, Cooch Behar West Bengal, Pin:736101, INDIA
 
2
Department of Mathematics, JECRC University Jaipur-303905, Rajasthan, INDIA
 
3
Dept. of Mathematics, Asansol Engineering College Asansol, Pin-713305, INDIA
 
 
Online publication date: 2017-12-09
 
 
Publication date: 2017-12-20
 
 
International Journal of Applied Mechanics and Engineering 2017;22(4):827-837
 
KEYWORDS
ABSTRACT
An analysis is presented to investigate the effects of thermal radiation on a convective slip flow of an electrically conducting slightly rarefied fluid, having temperature dependent fluid properties, over a wedge with a thermal jump at the surface of the boundary in the presence of a transverse magnetic field. The reduced equations are solved numerically using the finite difference code that implements the 3-stage Lobatto IIIa formula for the partitioned Runge-Kutta method. Numerical results for the dimensionless velocity and temperature as well as for the skin friction coefficient and the Nusselt number are presented through graphs and tables for pertinent parameters to show interesting aspects of the solution.
 
REFERENCES (30)
1.
Falkner V.M. and Skan S.W. (1931): Solutions of the boundary layer equations. - Philosophical Magazine, vol.7, pp.865-896.
 
2.
Rajagopal K.R., Gupta A.S. and Na T.Y. (1983): A note on the Falkner-Skan flows of a non-Newtonian fluid. - International Journal of Non-Linear Mechanics, vol.18, pp.313-320.
 
3.
Nanousis N.D. (1999): Theoretical magnetohydrodynamic analysis of mixed convection boundary layer flow over a wedge with uniform suction or injection. - Acta Mechanica, vol.138, pp.21-30.
 
4.
Rashad A.M. and Bakier A.Y. (2009): MHD effects on non-Darcy forced convection boundary layer flow past a permeable wedge in a porous medium with uniform heat flux. - Nonlinear Analysis: Modelling and Control, vol.14, pp.249-261.
 
5.
Kandasamy R., Muhaimin I., Khamis A.B. and Roslan R. (2013): Unsteady Heimenz flow of Cu-nanofluid over a porous wedge in the presence of thermal stratification due to solar energy radiation: Lie group transformation. - International Journal of Thermal Sciences, vol.65, pp.196-205.
 
6.
Das K. (2014): Convective slip flow of rarefied fluids over a permeable wedge plate embedded in a Darcy-Forchheimer porous medium. - The European Physical Journal Plus, vol.129, pp.50, pp.1-15.
 
7.
Gad-el-Hak M. (1999): The fluid mechanics of micro-devices-The freeman scholar lecture. - Journal of Fluids Engineering, vol.121, pp.5-33.
 
8.
Fang T. and Lee C.F. (2006): Exact solutions of incompressible Couette flow with porous walls for slightly rarefied gases. - Heat and Mass Transfer, vol.42, pp.255-262.
 
9.
Martin M.J. and Boyd I.D. (2010): Falkner-Skan flow over a wedge with slip boundary conditions. - Journal of Thermophysics and Heat Transfer, vol.24, pp.63-270.
 
10.
Nandeppanavar M.M., Vajravelu K., Abel M.S. and Siddalingappa M.N. (2012): Second order slip flow and heat transfer over a stretching sheet with non-linear Navier boundary condition. - International Journal of Thermal Sciences, vol.58, pp.143-150.
 
11.
Mukhopadhyay S. (2013) MHD boundary layer slip flow along a stretching cylinder. - Ain Shams Engineering Journal, vol.4, pp.317-324.
 
12.
Zheng L., Liu N., Niu J. and Zhang X. (2013): Slip and buoyancy lift effects on the mixed convection flow and radiation heat transfer of a micropolar fluid toward vertical permeable plate. - Journal of Porous Media, vol.16, pp.575-583.
 
13.
Das K., Duari P.R. and Kundu P.K. (2014): Solar radiation effects on Cu-water nanofluid flow over a stretching sheet with surface slip and temperature jump. - Arabian Journal for Science and Engineering, vol.39, pp.9015- 9023.
 
14.
Kumar S.R. (2015): The effect of the couple stress fluid flow on MHD peristaltic motion with uniform porous medium in the presence of slip effect. - Vol.9, No.4, pp.269-278.
 
15.
Chiam T.C. (1998): Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet. - Acta Mechanica, vol.129, pp.63-72.
 
16.
Rahman M.M., Uddin M.J. and Aziz A. (2009): Effects of variable electric conductivity and non-uniform heat source (or sink) on convective micropolar fluid flow along an inclined flat plate with surface. - International Journal of Thermal Sciences, vol.48, pp.2331-2340.
 
17.
Prasad K.V., Vajravelu K. and Datti P.S. (2010): The effects of variable fluid properties on the hydro-magnetic flow and heat transfer over a non-linear stretching sheet. - International Journal of Thermal Sciences, vol.49, pp.603-610.
 
18.
Sinha A., Shit G.C. and Ranjit N.K. (2015): Peristaltic transport of MHD flow and heat transfer in an asymmetric channel: Effects of variable viscosity, velocity-slip and temperature jump. - Alexandria Engineering Journal, vol.54, pp.691-704.
 
19.
Malga B.S., Kishan N., Reddy V.V. and Govardhan K. (2014): Finite element analysis of fully developed free convection flow, heat and mass transfer of a MHD micropolar fluid over a vertical channel. - Vol.8, No.4, pp.219-232.
 
20.
Rahman M.M. and Eltayeb I.A. (2011): Convective slip flow of rarefied fluids over a wedge with thermal jump and variable transport properties. - International Journal of Thermal Sciences, vol.50, pp.468-479.
 
21.
Makinde O.D. (2005): Free convection flow with thermal radiation and mass transfer past a moving vertical porous plate. - International Communications in Heat and Mass Transfer, vol.32, pp.1411-1419.
 
22.
Ibrahim F.S., Elaiw A.M. and Bakr A.A. (2008): Influence of viscous dissipation and radiation on unsteady MHD mixed convection flow of micropolar fluids. - Applied Mathematics and Information Sciences, vol.2, pp.143-162.
 
23.
Das K. (2013): Effects of thermophoresis and thermal radiation on MHD mixed convective heat and mass transfer flow. - Afrika Mathematika, vol.24, pp.511-524.
 
24.
Singh K. and Kumar M. (2014): Melting heat transfer in boundary layer stagnation point flow of MHD micropolar fluid towards a stretching / shrinking Surface. - Vol.8, No.4, pp.403-408.
 
25.
Das K., Duari P.R. and Kundu P. (2014): Nanofluid flow over an unsteady stretching surface in presence of thermal radiation. - Alexandria Engineering Journal, vol.53, pp.737-745.
 
26.
Jana S. and Das K. (2015): Influence of variable fluid properties, thermal radiation and chemical reaction on MHD slip flow over a flat plate. - Italian Journal of Pure and Applied Mathematics, vol.34, pp.29-44.
 
27.
Ling J.X. and Dybbs A. (1987): Forced convection over a flat plate submersed in a porous medium: variable viscosity case. - ASME, Paper 87-WA/HT-23, ASME Winter Annual Meeting, Boston, Massachusetts, pp.13-18.
 
28.
Savvas T.A., Markatos N.C. and Papaspyrides C.D. (1994): On the flow of non-Newtonian polymer solutions. - Applied Mathematical Modelling, vol.18, pp.14-22.
 
29.
Helmy K.A. (1995): MHD boundary layer equations for power law fluids with variable electric conductivity. - Meccanica, vol.30, pp.187-200.
 
30.
Aziz A. (2009): A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. - Communications in Nonlinear Science and Numerical Simulation, vol.14, pp.1064-1068.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top