ORIGINAL PAPER
Identification Damage Model for Thermomechanical Degradation of Ductile Heterogeneous Materials
,
 
 
 
More details
Hide details
1
Abdelmalek Essaadi University Faculty of Sciences, Department of Physics Tetouan 93030, Tetouan, MOROCCO
 
2
Abdelmalek Essaadi University National School of Applied Sciences, Departments TITM Tetouan 93030, Tetouan, MOROCCO
 
 
Online publication date: 2017-06-09
 
 
Publication date: 2017-05-24
 
 
International Journal of Applied Mechanics and Engineering 2017;22(2):475-481
 
KEYWORDS
ABSTRACT
The failure of ductile materials subject to high thermal and mechanical loading rates is notably affected by material inertia. The mechanisms of fatigue-crack propagation are examined with particular emphasis on the similarities and differences between cyclic crack growth in ductile materials, such as metals, and corresponding behavior in brittle materials, such as intermetallic and ceramics. Numerical simulations of crack propagation in a cylindrical specimen demonstrate that the proposed method provides an effective means to simulate ductile fracture in large scale cylindrical structures with engineering accuracy. The influence of damage on the intensity of the destruction of materials is studied as well.
 
REFERENCES (23)
1.
Cockroft M.G. and Latham D.J. (1968): Ductility and the workability of metals. - Journal of the Institute of Metals, vol.96, pp.33-39.
 
2.
Oyane M., Sato T., Okimoto K. and Shima S. (1980): Criteria for ductile fracture and their applications. - Journal of Mechanical Working Technology, vol.4, No.1, pp.65-81. doi: 10.1016/0378-3804(80)90006-6.
 
3.
Gurson A.L. (1977): Continuum theory of ductile rupture by void nucleation and growth: Part I - yield criteria and flow rules for porous ductile media. - Journal of Engineering Materials and Technology, vol.99, No.1, pp.2-15. doi: 10.1115/1.3443401.
 
4.
Lemaitre J. (1984): How to use damage mechanics. - Nuclear Engineering and Design, vol.80, No.1, pp.233-245. doi: 10.1016/0029-5493(84)90169-9.
 
5.
Lemaitre J. (1985): A continuous damage mechanics model for ductile fracture. - Journal of Engineering Materials and Technology, vol.77, pp.335-344.
 
6.
Chaboche J.L. (1988): Continuum damage mechanics: Part I- general concepts. - Journal of Applied Mechanics, vol.55, No.1, pp.55-64. doi: 10.1115/1.3173661.
 
7.
Chaboche J.L. (1988): Continuum damage mechanics: Part II- damage growth, crack initiation and crack growth. - Journal of Applied Mechanics, vol.55, No.1, pp.65-72. doi: 10.1115/1.3173662.
 
8.
Lemaitre J. (1996): A Course on Damage Mechanics. - 2nd Edition, Springer, Berlin. doi: 10.1007/978-3-642-18255-6.
 
9.
Chow C.L. and Wang J. (1987): An anisotropic theory of continuum damage mechanics for ductile fracture. - Engineering Fracture Mechanics, vol.27, No.5, pp.547-558. doi: 10.1016/0013-7944(87)90108-1.
 
10.
Tai W. and Yang B. (1987): A new damage mechanics criterion for ductile fracture. - Engineering Fracture Mechanics, vol.27, No.4, pp.371-378. doi: 10.1016/0013-7944(87)90174-3.
 
11.
Wang T.-J. (1992): Unified CDM model and local criterion for ductile fracture: I - unified CDM model for ductile fracture. - Engineering Fracture Mechanics, vol.42, pp.177-183.
 
12.
Wang T.-J. (1992): Unified CDM model and local criterion for ductile fracture: II - ductile fracture local criterion based on the CDM model. - Engineering Fracture Mechanics, vol.42, pp.185-193.
 
13.
Chandrakanth S. and Pandey P. (1995): An isotropic damage model for ductile material. - Engineering Fracture Mechanics, vol.50, No.4, pp.457-465. doi: 10.1016/0013-7944(94)00214-3.
 
14.
Bonora N. (1997): A nonlinear CDM model for ductile failure. - Engineering Fracture Mechanics, vol.58, No.1, pp.11-28. doi: 10.1016/S0013-7944(97)00074-X.
 
15.
Kachanov L.M. (1986): Introduction to continuum damage mechanics, mechanics of elastic stability. - Kluwer, US.
 
16.
Peeters B. and DeRoeck G. (2001): One-year monitoring of the Z24-Bridge: environmental effects versus damage events. - Earthquake Engineering and Structural Dynamics, vol.30, pp.149-171.
 
17.
Farrar C.R., Doebling S.W., Cornwell P.J. and Straser E.G. (1997): Variability of modal parameters measured on the Alamosa canyon bridge. - Proceedings of 15th International Modal Analysis Conference, Orlando, USA, pp.257-263.
 
18.
Ralbovsky M., Deix S. and Flesch R. (2010): Frequency changes in frequency-based damage identification. - Structure and Infrastructure Engineering, vol.6, pp.611-619.
 
19.
DeRoeck G., Peeters B. and Maeck J. (2000): Dynamic monitoring of civil engineering structures. - Computational Methods for Shell and Spatial Structures, IASS-IACM, Athen, Greece.
 
20.
Hu W.H., Moutinho C., Caetano E., Magalhães F. and Cunha Á. (2012): Continuous dynamic monitoring of a lively footbridge for serviceability assessment and damage detection. - Mechanical Systems and Signal Processing, vol.33, pp.38-55.
 
21.
McClintock F.A. (1968): A criterion for ductile fracture by the growth of holes. - Journal of Applied Mechanics, vol.35, No.2, pp.363-371. doi: 10.1115/1.3601204.
 
22.
Simulia Abaqus 6.10, “User Subroutines Reference Manual,” 2010.
 
23.
Lee S.W. and Pourboghrat F. (2005): Finite element simulation of the Punchless piercing process with Lemaitre damage model. - International Journal of Mechanical Sciences, vol.47, No.11, pp.1756-1768. doi: 10.1016/j.ijmecsci.2005.06.009.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top