ORIGINAL PAPER
Identification of Heredity Kernels and Their Influence on the Life Time of Glass/Polyester Composites
,
 
,
 
 
 
More details
Hide details
1
EPAC/Department of Civil Engineering University of Abomey-Calavi (UAC), BENIN 03BP1409 Cotonou (Benin)
 
2
EPAC/Department of Civil Engineering University of Abomey-Calavi (UAC), Benin
 
3
International Chair of Mathematical Physics and Applications (ICMPA-UNESCO Chair), University of Abomey-Calavi (UAC), Benin
 
 
Online publication date: 2014-12-30
 
 
Publication date: 2014-11-01
 
 
International Journal of Applied Mechanics and Engineering 2014;19(4):725-734
 
KEYWORDS
ABSTRACT
One of the major problems encountered in prediction of hereditary viscoelastic behavior of polymeric composites is the determination of heredity kernels. This issue comes down to identification of the model characterizing the viscoelastic properties of these materials. The purpose of this work is to propose a model for prediction of viscoelastic nonlinear behavior of laminate composite with polyester matrix, through the study and analysis of heredity kernels and their influence on the life time of this material. Identification of this model required experimental determination at room temperature, of viscoelastic parameters of heredity kernels by macroscopic approach. These data provide predictive tools for establishment of the life time and long term stress limit under static complex loading for this type of material.
 
REFERENCES (11)
1.
Augl J.M. (1987): Non linear creep effects of physical ageing, temperature and moisture of an epoxy resin. - J. Rheo., vol.31, pp.1-36.
 
2.
Brinson H.F. and Tuttle M.E. (1986): Prediction of the long term creep compliance of general composite laminates. - Exp. Mech., vol.26, pp.89-102.
 
3.
Dimitrienko Yu. and Dimitrienko I. (1989): Long term strength of reinforced composites. - Mech. Comp. Mat., vol.25, pp.13-18.
 
4.
Olodo E.T., Niang F., Adjovi E.C. and. Kopnov V.A. (2013): Long term behavior of composite material polyester-wood reinforced glass fiber. - Res. J. Appl. Sci. Eng. Tech., vol.6, No.2, pp.196-201.
 
5.
Pobedria B. (2007): On the effective behavior of nonlinear inelastic composites. - J. Mech. a Phys. Sol., vol.55, pp.1932-1963.
 
6.
Pobedria B. (1983): On the theory of viscoelasticity of structurally inhomogeneous media. - J. Appl. Math. Mech., vol.47, pp.104-109.
 
7.
Schapery R.A. (2000): Nonlinear viscoelastic solids. - Int. J. Sol. Str., vol.37, pp.359-366.
 
8.
Schapery R.A. (1997): Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. - Mech. Time-Dep. Mat., vol.1, pp.209-240.
 
9.
Sullivan J.L. (1990): Creep and physical ageing of composites. - Comp. Sci. Tech., vol.39, pp.207-232.
 
10.
Suvorova Y. (2010): Experimental and analytical methods for estimating durability of geosynthetic materials. - J. Mach. Man. Rel., vol.39, pp.391-395.
 
11.
Zhang S.Y. and Xiang X.Y. (1992): Creep characterization of a fiber reinforced plastic material. - J. Rein. Pl. Comp., vol.2, pp.1187-1194.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top