ORIGINAL PAPER
Influence of Diffusion and Impedence Parameters on Wave Propagation in Thermoelastic Medium
 
More details
Hide details
1
Department of Mathematics, School of Chemical Engineering and Physical Sciences Lovely Professional University-, Punjab, India
 
2
Department of Mathematics, Kurukshetra University Kurukshetra-Haryana, India
 
3
Department of Mathematics, IKG Punjab Technical University Hoshiarpur Campus, Punjab, India
 
 
Online publication date: 2021-12-07
 
 
Publication date: 2021-12-01
 
 
International Journal of Applied Mechanics and Engineering 2021;26(4):99-112
 
KEYWORDS
ABSTRACT
The aim of the present paper is to study the impact of diffusion and impedance parameters on the propagation of plane waves in a thermoelastic medium for Green and Lindsay theory (G-L) and the Coupled theory (C-T) of thermoelasticity. Results are demonstrated for impedance boundary conditions and the amplitude ratios of various reflected waves against the angle of incidence are calculated numerically. The characteristics of diffusion, relaxation time and impedence parameter on amplitude ratios have been depicted graphically. Some cases of interest are also derived from the present investigation.
 
REFERENCES (23)
1.
Nowacki W. (1974a): Dynamical problems of thermo diffusion in solids I.– Bull Acad. Pol. Sci. Ser. Sci. Tech, vol.22, pp.55-64.
 
2.
Nowacki W. (1974b): Dynamical problems of thermo diffusion in solids II.– Bull Acad. Pol. Sci. Ser. Sci. Tech, vol.22, pp.129-135.
 
3.
Nowacki W. (1974c): Dynamical problems of thermo diffusion in solids III, Bull Acad. Pol. Sci. Ser. Sci. Tech, vol.22, pp.257-266.
 
4.
Nowacki W. (1976): Dynamical problems of thermo diffusion in solids.– Engg. Frac. Mech, vol.8, pp.261-266.
 
5.
Sherief H.H., Hamza F. and Saleh H. (2004): The theory of generalized thermoelastic diffusion.– International Journal Engineering Science, vol.42, pp.591-608.
 
6.
Sherief H.H. and Saleh H. (2004): A half-space problem in the theory of generalized thermoelastic diffusion.– International Journal of Solids and Structures, vol.42, pp.591-608.
 
7.
Singh B. (2005): Reflection of P and SV Waves from free surface of an elastic solid with generalized thermodiffusion.– J. Earth Syst. Sci, vol.114, No.2, pp.159-168.
 
8.
Palani G. and Abbas I.A. (2009): Free convection MHD flow with thermal radiation from an impulsively-started vertical plate.– Nonlinear Analysis: Modelling and Control, vol.14, No.1, pp.73-84.
 
9.
Ibrahim A.A, El-Amin M.F. and Salama A (2009): Effect of thermal dispersion on free convection in a fluid saturated porous medium.– International Journal of Heat and Fluid Flow, vol.30, No.2, pp.229-236.
 
10.
Aouadi M. (2009): Theory of generalized micropolar thermoelastic diffusion under Lord-Shulman model.– Journal of Thermal Stresses, vol.32, pp.932-942.
 
11.
Othman M.I.A., Atwa S.Y. and Farouk R.M. (2009): The effect of diffusion on two dimensional problem of generalized thermoelasticity with Green-Naghdi theory.– International Communications in Heat and Mass Transfer, vol.36, No.8, pp.857-864.
 
12.
Kumar R. and Kansal T. (2012): Plane waves and fundamental solution in the generalized theories of thermoelastic diffusion.– IJAMM, vol.8, No.4, pp.21-34.
 
13.
El-Naggar A.M., Kishka Z., Abd-Alla A.M, Abbas I.A, Abo-Dahab S.M and Elsagheer M. (2013): On the initial stress, magnetic field, voids and rotation effects on plane waves in generalized thermoelasticity.– Journal of Computational and Theoretical Nanoscience, vol.10, No.6, pp.1408-1417.
 
14.
Marin M, Othman M.I.A and Abbas I.A. (2015): An extension of the domain of influence theorem for generalized thermoelasticity of anisotropic material with voids.– Journal of Computational and Theoretical Nanoscience, vol.12, No.8, pp.1594-1598.
 
15.
Othman M.I.A. and Said S.M. (2018): Effects of diffusion and internal heat source on a two-temperature thermoelastic medium with three-phase-lag model.– Archives of Thermodynamics, vol.39, No.2, pp.15-39.
 
16.
Saeed T., Ibrahim A.A. and Marin M. (2020): A GL model on thermo-elastic interaction in a poroelastic material using finite element method.– Symmetry, vol.12, No.3, pp.488 (1-14).
 
17.
Tiersten H.F. (1969): Elastic surface waves guided by thin films.– Journal of Applied Physics, vol.40, pp.770-789.
 
18.
Malischewsky P.G. (1987): Surface Waves and Discontinuities.– Elsevier, Amsterdam.
 
19.
Vinh P.C. and Hue T.T. (2014): Rayleigh waves with impedance boundary conditions in anisotropic solids.– Wave Motion, vol.51, pp.1082-1092.
 
20.
Singh B. (2017): Reflection of elastic waves from plane surface of a half-space with impedance boundary conditions.– Geosciences Research, vol.2, No.4, pp.242-253.
 
21.
Green A.E. and Lindsay K.A. (1972): Thermoelasticity.– Journal of Elasticity, vol.2, pp.1-7.
 
22.
Schoenberg A.C. (1971): Transmission and reflection of plane waves at an elastic-viscoelastic interface.– Geophysics J.R. Astr. Soc., vol.25, pp.35-47.
 
23.
Thomas L. (1980): Fundamental of Heat Transfer.– Prentice Hall Inc., Englewmd Cliffs, NJ.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top