ORIGINAL PAPER
Influence of Slip Parameter, Viscous Dissipation and Joule Heating Effect on Boundary Layer Flow and Heat Transfer Over a Power-Law Stretching Wedge-Shaped Surface with the Correlation Coefficient and Multiple Regressions
,
 
 
 
More details
Hide details
1
Department of Mathematics, Chittagong University of Engineering and Technology, Chittagong-, 4349, Bangladesh
 
2
Department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka-, 1000, Bangladesh
 
 
Online publication date: 2022-06-14
 
 
Publication date: 2022-06-01
 
 
International Journal of Applied Mechanics and Engineering 2022;27(2):1-21
 
KEYWORDS
ABSTRACT
The influence of slip parameter, viscous dissipation, and Joule heating parameter on MHD boundary layer nanofluid flow over a permeable wedge-shaped surface was analysed. The PDEs and the associated boundary conditions were transformed to a set of non-similar ODEs and the obtained system of equations was solved numerically with the help of the spectral quasi-linearization method (SQLM) by applying suitable software. This method helps to identify the accuracy and convergence of the present problem. The current numerical results were compared with previously published work and are found to be similar. The fluid velocity, fluid temperature, and nanoparticle concentration within the boundary layer region for various values of the parameters such as the slip effect, magnetic strength, Prandtl number, Lewis number, stretching ratio, viscous dissipation, suction, Brownian motion, Joule heating, heat generation, and thermophoresis are studied. It is observed that the Brownian motion, Joule heating, viscous dissipation, and thermophoresis lead to decreases in the heat and mass transfer rate. The skin friction coefficient enhances with slip, magnetic, permeability, and suction parameters, but reduces with the Brownian motion, wedge angle, and stretching ratio parameters whereas there is no effect of mixed convection, thermophoresis, heat generation parameters, the Prandtl and Eckert number.
REFERENCES (27)
1.
Choi S.U.S. (1995): Enhancing thermal conductivity of fluids with nanoparticles.− Proc. ASME Int. Mech. Eng. Cong. Exp., San Francisco, USA, vol.66, pp.99-105.
 
2.
Buongiorno J. (2006): Convective transport in nanofluids.− ASME J. Heat Transfer, vol.128, pp.240-250.
 
3.
Falkner V.M. and Skan S.W. (1931): Some approximate solutions of the boundary layer equations.− Philosophical Magazine, vol.12, pp.865-896.
 
4.
Nagendramma V., Sreelakshmi K. and Sarojamma G. (2015): MHD heat and mass transfer flow over a stretching wedge with convective boundary condition and thermophoresis.− Proceedia Eng., vol.127, pp.963-96.
 
5.
Ashwini G. and Eswara A.T. (2015): Unsteady MHD accelerating flow past a wedge with thermal radiation and internal heat generation/absorption.− Int. J. Math. Com. Sci., vol.1, pp.13-26.
 
6.
Rames B.K.H., Shreenivas R.K., Achala L.N. and Bujurke N.M. (2017): Similarity solutions of the MHD boundary layer flow past a constant wedge within porous media.− Math. Prob. Eng., vol.2017, pp.11.
 
7.
Ibrahim W. and Tulu A. (2019): Magnetohydrodynamic (MHD) boundary layer flow past a wedge with heat transfer and viscous effects of nanofluid embedded in porous media.− Math. Prob. Eng., vol.2019, pp.12.
 
8.
Nageeb A., Haroun H., Mondal S. and Sibanda P. (2017): Effects of thermal radiation on mixed convection in an MHD nanofluid flow over a stretching sheet using a spectral relaxation method.− Int. J. Math. Com. Sci., vol.11, pp.1-10.
 
9.
Kasmani R.M., Sivasankaran S., Bhuvaneswari M. and Hussein A.K. (2017): Analytical and numerical study on convection of nanofluid past a moving wedge with Soret and Dufour effects.− Int. J. Num. Method Heat Fluid Flow, vol.27, pp.2333-2354.
 
10.
Waini I., Ishak A. and Pop I. (2020): MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge.− Appl. Math. Mech., vol.41, pp.507-520.
 
11.
Al-Sayagh R. (2021): Control of the free convective heat transfer using a U-shaped obstacle in an Al2O3-water nanofluid filled cubic cavity.− Int. J. Adv. Appl. Sci., vol.8, pp.23-30.
 
12.
Khan W.A. and Pop I. (2013): Boundary layer flow past a wedge moving in a nanofluid.− Math. Prob. Eng., vol.1, p.7, https://doi.org/10.1155/2013/6....
 
13.
Menni Y., Chamkha A. J., Massarotti N., Ameur H., Kaid N. and Bensafi M. (2020): Hydrodynamic and thermal analysis of water, ethylene glycol, and water-ethylene glycol as base fluids dispersed by aluminum oxide nano-sized solid particles.− Int. J. Num. Methods Heat Fluid Flow, vol.30, pp.4349-4386.
 
14.
Krishna M.V., Ahamad N.A. and Chamkha A.J. (2021): Hall and ion slip impacts on unsteady MHD convective rotating flow of heat generating/absorbing second-grade fluid.− Alexandria Eng. J., vol.60, pp.845-885.
 
15.
Krishna M.V. and Chamkha A.J. (2020): Hall and ion slip effects on unsteady MHD convective rotating flow of nanofluids - application in Biomedical Engineering.− J. Egyptian Math. Soci., vol.28, pp.1-14.
 
16.
Krishna M.V., Ahamad N.A. and Chamkha A.J. (2020): Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponentially accelerated plate.− Alexandria Eng. J., vol.59, pp.565-577.
 
17.
Krishna M.V. and Chamkha A.J. (2020): Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through a porous medium.− Int. Commu. Heat Mass Transfer, vol.113, https://doi.org/10.1016/j.iche....
 
18.
Krishna M.V. and Chamkha A.J. (2020): Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium.− Results in Physics, vol.15, p.10, https://doi.org/10.1016/j.rinp....
 
19.
Krishna M.V., Jyothi K. and Chamkha A.J. (2020): Heat and mass transfer on MHD flow of second-grade fluid through porous medium over a semi-infinite vertical stretching sheet.− J. Porous Media, vol.23, pp.751-765.
 
20.
Krishna M.V., Swarnalathamma B.V. and Chamkha A.J. (2019): Investigations of Soret, Joule, and Hall effects on MHD rotating mixed convective flow past an infinite vertical porous plate.− J. Ocean Engg. Sci., vol.4, pp.263-275.
 
21.
Krishna M.V., Reddy M.G. and Chamkha A.J. (2019): Heat and mass transfer on MHD free convective flow over an infinite non-conducting vertical flat porous plate.− Int. J. Fluid Mech. Res., vol.46, pp.1-25.
 
22.
Krishna M.V., Swarnalathamma B.V. and Chamkha A.J. (2018): Heat and mass transfer on the magnetohydrodynamic chemically reacting flow of micropolar fluid through a porous medium with Hall effects.− Special Topics Rev. in Porous Media, Int. J., vol.9, pp.347-364.
 
23.
Krishna M.V., Anand P.V.S. and Chamkha A.J. (2019): Heat and mass transfer on the free convective flow of a micropolar fluid through a porous surface with inclined magnetic field and Hall effects.− Special Topics Rev. in Porous Media Int. J., vol.10, pp.203-223.
 
24.
Krishna M.V., Ahamad N.A. and Chamkha A.J. (2021): Numerical investigation on unsteady MHD convective rotating flow past an infinite vertical moving porous surface.− Ain Shams Eng. J., vol.12, pp.2099-2109.
 
25.
Motsa S.S., Dlamini P. and Khumalo M. (2014): Spectral relaxation method and spectral quasilinearization method for solving unsteady boundary layer flow problems.− Adv. Math. Phys., vol.2014, pp.1-12, https://doi.org/10.1155/2014/3....
 
26.
Bellman R.E. and Kalaba R.E. (1965): Quasilinearization and Nonlinear Boundary-Value Problems.− Elsevier: New York, NY, USA.
 
27.
Mohammadi F., Hosseini M.M., Dehgahn A. and Ghaini F.M. (2012): Numerical solutions of Falkner-skan equation with heat transfer studies.− Nonlinear Sci., vol.3, pp.86-93.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top