ORIGINAL PAPER
Influence of Thermal Radiation on Magnetohydrodynamic (MHD) Boundary Layer Flow of a Viscous Fluid Over an Exponentially Stretching Sheet
,
 
 
 
 
More details
Hide details
1
Department of Mathematics, University of Ilorin, Ilorin, Nigeria
 
 
Online publication date: 2016-09-10
 
 
Publication date: 2016-08-01
 
 
International Journal of Applied Mechanics and Engineering 2016;21(3):581-592
 
KEYWORDS
ABSTRACT
Radiation on a magnetohydrodynamic (MHD) boundary layer flow of a viscous fluid over an exponentially stretching sheet was considered together with its effects. The new technique of homotopy analysis method (nHAM) was used to obtain the convergent series expressions for velocity and temperature, where the governig system of partial differential equations was transformed into ordinary differential equations. The interpretation of these expressions is shown physically through graphs. We observed that the effects of the Prandtl and magnetic number act in opposite to each other on the temperature.
REFERENCES (44)
1.
Magyari E. and Keller B. (1999): Heat and transfer in the boundary layer on an exponentially stretching continuous surface. – J. Phys. D. Appl. Phys., vol.32, pp.577-585.
 
2.
Magyari E., Keller B. (1999). Heat and transfer in the boundary layer on an exponentially stretching continuous surface J. Phys. D. Appl. Phys. 32: 577-585.
 
3.
Sakiadis B.C. (1961): Boundary layer bahaviour on continous solid surface: I boundary layer equation for two dimensional and axisymmetric flow. – AIChE J., vol.7, pp.26-28.
 
4.
Sakiadis B.C. (1961). Boundary layer bahaviour on continous solid surface: I boundary layer equation for two dimensional and axisymmetric flow AIChE J. 7: 26-28.
 
5.
Crane, L.J. (1970): Flow past a stretching plate. – Z. Angew. Math. Mech., vol.21, pp.645-647.
 
6.
Crane L.J. (1970). Flow past a stretching plate Z. Angew. Math. Mech. 21: 645-647.
 
7.
Carragher P. and Crane L.J. (1982): Heat transfer on a continuous streeting sheet. – Z. Angew. Math. Mech., vol.62, 564-573.
 
8.
Carragher P., Crane L.J. (1982). Heat transfer on a continuous streeting sheet Z. Angew. Math. Mech. 62: 564-573.
 
9.
Partha M.K., Murthy P.V.S.N. and Rajasekhar G.P. (2005): Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface. – Heat Mass Transfer, vol.41, pp.360-366.
 
10.
Partha M.K., Murthy P.V.S.N., Rajasekhar G.P. (2005). Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface Heat Mass Transfer. 41: 360-366.
 
11.
Hayat T. and Sajid M. (2008) Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet. – Int. J. Heat Mass Transfer, vol.50, pp.75-84.
 
12.
Hayat T., Sajid M. (2008). Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet Int. J. Heat Mass Transfer. 50: 75-84.
 
13.
Ganesan P. and Palani G. (2004): Finite difference analysis of unsteady natural convection MHD past an inclined plate with variable surface heat and mass flux. – Int. J. Heat Mass Transfer, vol.47, pp.4449-4457.
 
14.
Ganesan P., Palani G. (2004). Finite difference analysis of unsteady natural convection MHD past an inclined plate with variable surface heat and mass flux Int. J. Heat Mass Transfer. 47: 4449-4457.
 
15.
Seddeed M.A. (2002): Effect of radiation and variable viscousity on a MHD free convection flow past a semi-infinite flat plate with an aligned magnetic field in the case of unsteady flow. – Int. J. Heat Mass Transfer, vol.45, pp.931-935.
 
16.
Seddeed M.A. (2002). Effect of radiation and variable viscousity on a MHD free convection flow past a semi-infinite flat plate with an aligned magnetic field in the case of unsteady flow Int. J. Heat Mass Transfer. 45: 931-935.
 
17.
Anuar I. (2011): MHD boundary layer flow due to an exponentially stretching sheet with radiation effect. – Sains Malaysiana, vol.40, No.4, pp.391-395.
 
18.
Anuar I. (2011). MHD boundary layer flow due to an exponentially stretching sheet with radiation effect Sains Malaysiana. 40 (4): 391-395.
 
19.
Aboeldahab E.M. and El Gendy M.S. (2002): Radiation effect on MHD free convective flow of a gas past a semi-infinite vertical plate with variable thermos-physical properties for high-temperature differences. – Can. J. Phys., vol.80, pp.1609-1619.
 
20.
Aboeldahab E.M., El Gendy M.S. (2002). Radiation effect on MHD free convective flow of a gas past a semi-infinite vertical plate with variable thermos-physical properties for high-temperature differences Can. J. Phys. 80: 1609-1619.
 
21.
Cogley A.C., Vincenty W.G. and Gilles S.E. (1968): Differential approximation for radiative transfer in a nongrey gas near equilibrium. – AIAA J., vol.6, pp.551-553.
 
22.
Cogley A.C., Vincenty W.G., Gilles S.E. (1968). Differential approximation for radiative transfer in a nongrey gas near equilibrium AIAA J. 6: 551-553.
 
23.
Rosseland S. (1936): Theoretical Astrophysics. – New York: Oxford University.
 
24.
Rosseland S. (1936). Theoretical Astrophysics. Oxford University, New York.
 
25.
Siegel R. and Howell J.R. (1992): Thermal Radiation: Heat Transfer 3rd ed. – Washington DC: Hemisphere.
 
26.
Siegel R., Howell J.R. (1992). Thermal Radiation: Heat Transfer, 3rd ed. Hemisphere, Washington DC.
 
27.
Sparrow E.M. and Cess R.D. (1978): Radiation Heat Transfer. – Washinton DC: Hemisphere.
 
28.
Sparrow E.M., Cess R.D. (1978). Radiation Heat Transfer. Hemisphere, Washinton DC.
 
29.
Raptis A. (2004): Effect of thermal radiationon MHD flow. – Appl. Math. Comput., vol.32, pp.577-585.
 
30.
Raptis A. (2004). Effect of thermal radiationon MHD flow Appl. Math. Comput. 32: 577-585.
 
31.
Bataller R.C. (2008): Similarity solutions for boundary layer flow and heat transfer of a FENE-P fluid with thermal radiation. – Phys. Lett.A, vol.372, pp.2431-2439.
 
32.
Bataller R.C. (2008). Similarity solutions for boundary layer flow and heat transfer of a FENE-P fluid with thermal radiation Phys. Lett. A. 372: 2431-2439.
 
33.
Liao S.J. (1992): The proposed Homotopy Analysis Technique for the Solution of Nonliear Problems. – Ph.D. Thesis.
 
34.
Liao S.J. (1992). The proposed Homotopy Analysis Technique for the Solution of Nonliear Problems. Ph.D. Thesis.
 
35.
Liao S.J. (2003): Beyond Perturbation:Introduction to Homotopy Analysis Method. – Chapman and Hall/CRC Press.
 
36.
Liao S.J. (2003). Beyond Perturbation:Introduction to Homotopy Analysis Method. Chapman and Hall/CRC Press.
 
37.
Bidin B. and Nazar R. (2009): Numerical solution of the boundary Layer Flow over an Exponentially Stretching Sheet with Thermal Radiation. Euro.J.Sci. 33(4) : 710 – 717.
 
38.
Bidin B., Nazar R. (2009). Numerical solution of the boundary Layer Flow over an Exponentially Stretching Sheet with Thermal Radiation Euro. J. Sci. 33 (4): 710-717.
 
39.
Hany N.H. and Magdy A.E. (2012): A new technique of using homotopy analysis method for second order nonlinear differential equation. – Appl. Math. Comput., vol.219, pp.708-728.
 
40.
Hany N.H., Magdy A.E. (2012). A new technique of using homotopy analysis method for second order nonlinear differential equation Appl. Math. Comput. 219: 708-728.
 
41.
Hany N.H. and Magdy A.E. (2010): A New Technique of Using Homotopy Analysis Method for Solving High-Order Nonlinear Differential Equations. – Wiley online Libery.
 
42.
Hany N.H., Magdy A.E. (2010). A New Technique of Using Homotopy Analysis Method for Solving High-Order Nonlinear Differential Equations. Wiley online Libery.
 
43.
Hassan H.N. and El-Tawil M.A. (2012): A new technique of using homotopy analysis method for second order nonlinear differential equations. – Applied Mathematics and Computation, vol.219, No.2, pp.708-728.
 
44.
Hassan H.N., El-Tawil M.A. (2012). A new technique of using homotopy analysis method for second order nonlinear differential equations Applied Mathematics and Computation. 219 (2): 708-728.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top