ORIGINAL PAPER
Interaction Due to Mechanical Source in Generalized Thermo Microstretch Elastic Medium
More details
Hide details
1
Department of Mathematics S.G.A.D. Govt. College Punjab, INDIA
2
Department of Mathematics Lovely Professional University Punjab, INDIA
Online publication date: 2014-08-30
Publication date: 2014-05-01
International Journal of Applied Mechanics and Engineering 2014;19(2):347-363
KEYWORDS
ABSTRACT
The eigen value approach, following the Laplace and Hankel transformation has been employed to find a general solution of the field equations in a generalized thermo microstretch elastic medium for an axisymmetric problem. An infinite space with the mechanical source has been applied to illustrate the utility of the approach. The integral transformations have been inverted by using a numerical inversion technique to obtain normal displacement, normal force stress, couple stress and microstress in the physical domain. Numerical results are shown graphically
REFERENCES (19)
1.
Aouadi M. (2008): Some theorems in the isotropic theory of microstretch thermoelasticity with microtemperatures. - J. of Thermal Stresses, vol.31, No.7, pp.649-662.
2.
Chandrasekharaiah D.S. and Srinath K.S. (2000): Thermoelastic wave without energy dissipation in an unbounded body with a spherical cavity. - Int. J. Math. and Math. Sci., vol.23, pp.555-562.
3.
Ciarletta M. (1999): A theory of micropolar thermoelasticity without energy dissipation. - J. Thermal Stresses, vol.22, pp.581-594.
4.
Eringen A.C. (1966): Linear theory of micropolar elasticity. - J. Math. Mech., vol.15, pp.909-923.
5.
Eringen A.C. (1970): Foundation of micropolar thermoelasticity. - Course of Lectures No.23. Verlag Springer.
6.
Eringen A.C. (1971): Micropolar elastic solids with stretch. - Ari. Kitabevi Matbassi, vol.24, pp.1-18.
7.
Eringen A.C. (1984): Plane waves in non-local micropolar elasticity.- Int. J. Eng. Sci., vol.22, pp.1113-1121.
8.
Eringen A.C. (1990): Theory of thermo-microstretch elastic solids. - Int. J. Eng. Sci., vol.28, pp.1291-1301.
9.
Green A.E. and Lindsay K.A. (1972): Thermoelasticity. - J. Elasticity, vol.2, pp.1-7.
10.
Green A.E. and Naghdi P.M. (1993): Thermoelasticity without energy dissipation. - J. Elasticity, vol.31, pp.189-208.
11.
Honig G. and Hirdes V. (1984): A method for the numerical inversion of the Laplace transforms. - J. of Computational and App. Math., vol.10, pp.113-132.
12.
Iesan D. and Nappa L. (1995): Extension and bending of microstretch elastic circular cylinders. - Int. J. Eng. Sci., vol.33, pp.1139-1151.
13.
Kumar R. and Partap G. (2009): Axisymmetric free vibrations in microstretch thermoelastic homogenous isotropic plate. - Int. J. of App. Mech. and Eng., vol.14, No.1, pp.211-237.
14.
Lord H.W. and Shulman Y. (1967): A generalized dynamical theory of thermoelasticity. - J. Mech. Phys. Solid, vol.15, pp.299-309.
15.
Nowacki W. (1966): Couple stresses in the theory of thermoelasticity. - Proc. ITUAM Symposia, Vienna, Springer- Verlag, pp.259-278.
16.
Othman M.I.A., Lotfy Kh. and Farouk R.M. (2010): Generalized thermo-microstretch elastic medium with temperature dependent properties for different theories. - Eng. Analysis with Boundary Elements, vol.34, No.3, pp.229-237.
17.
Othman M.I.A., Atwa S.Y., Jahangir A. and Khan A. (2013): Gravitational effect on plane waves in generalized thermo-microstretch elastic solid under Green Naghdi. - Appl. Math. Inf. Sci. Lett.1, vol.2, pp.25-38.
18.
Press W.H., Teukolsky and Vellerling (1986): Numerical Recipes in FORTRAN 2nd Edition. - Cambridge: Cambridge University Press.
19.
Sharma J.N. and Chand D. (1992): On the axisymmetric and plane strain problems of generalized thermoelasticity. - Int. J. Eng. Sci., vol.33, pp.223-230.