ORIGINAL PAPER
Joining of Carbon Steel AISI 1006 to Aluminum Alloy AA6061-T6 Via Friction Spot Joining Technique
 
More details
Hide details
1
Engineering Technical College - Baghdad, Middle Technical University, Baghdad, Iraq
 
2
Technical Institute - Suwaira, Middle Technical University, Baghdad, Iraq
 
3
Institute of Technology - Baghdad, Middle Technical University, Baghdad, Iraq
 
4
Materials Engineering Department, University of Technology, Baghdad, Iraq
 
 
Online publication date: 2022-12-03
 
 
Publication date: 2022-12-01
 
 
International Journal of Applied Mechanics and Engineering 2022;27(4):1-12
 
KEYWORDS
ABSTRACT
This work aims to join sheets of carbon steel to aluminum alloy AA6061. A lap joint arrangement was used with a joint lap area of dimensions * 25 25 mm. The joining procedure was carried out using a rotating tool of 10 mm shoulder diameter. Three process parameters, with three levels for each parameter, were selected to investigate their effects on joints quality. The parameter’s levels for each experiment were designed using the design of the experiment method (DOE). The results indicated that the two materials were joined by a mechanical interlock at an interface line, without formation of intermetallic compounds. The shear force of the joint reached an ultimate value of. 482kN. The shear force of the joint improved by increasing plunging depth of the tool. Samples of minimum shear force value failed by a pull-outing aluminum metal from the carbon steel specimen. Samples of higher shear force value exhibited a shear mode of fracture. Increasing the rotating speed and decreasing pre-heating increased the process temperature.
 
REFERENCES (27)
1.
Suryanarayanan R. and Sridhar V. G. (2021): Studies on the influence of process parameters in friction stir spot welded joints – A review.– Materials Today: Proceedings, vol.37, No.2, pp.2695-2702, doi.org/10.1016/j.matpr.2020.08.532.
 
2.
Tozaki Y., Uematsu Y. and Tokaji K. (2010): A newly developed tool without probe for friction stir spot welding and its performance.– Journal of Materials Processing Technology, vol.210, No.6, pp.844-851, doi.org/10.1016/j.jmatprotec.2010.01.015.
 
3.
Pandey A. K. and Mahapatra S. S. (2019): Investigation of weld zone obtained by friction stir spot welding (FSSW) of aluminium-6061 alloy.– Materials Today: Proceedings, vol.18, No.7, pp.4491-4500, doi.org/10.1016/j.matpr.2019.07.419.
 
4.
Abdullah I.T., Ridha M.H., Barrak O.S., Hussein S.K. and Hussein A.K. (2021): Joining of Aa1050 sheets via two stages of friction spot technique.– Journal of Mechanical Engineering Research and Developments, vol.44, No.4, pp.305-317.
 
5.
Liu F. C., Hovanski Y., Miles M. P., Sorensen C. D. and Nelson T. W. (2018): A review of friction stir welding of steels: Tool, material flow, microstructure, and properties.– Journal of Materials Science & Technology, vol.34, No.1, pp.39-57, doi.org/10.1016/j.jmst.2017.10.024.
 
6.
Bagheri B., Abbasi M., Abdollahzadeh A. and Omidvar H. (2020): Advanced approach to modify friction stir spot welding process.– Metals and Materials International, vol.26, No.10, pp.1562-1573, doi.org/10.1007/s12540-019-00416-x.
 
7.
Xiong J., Peng X., Shi J., Wang Y., Sun J., Liu X. and Li J. (2021): Numerical simulation of thermal cycle and void closing during friction stir spot welding of AA-2524 at different rotational speeds.– Materials Characterization, vol.174, p.110984, doi.org/10.1016/j.matchar.2021.110984.
 
8.
Hsieh M.J., Lee R.T. and Chiou Y.C. (2017): Friction stir spot fusion welding of low-carbon steel to aluminum alloy.– Journal of Materials Processing Technology, vol.240, pp.118-125, doi.org/10.1016/j.jmatprotec.2016.08.034.
 
9.
Shen Z., Ding Y. and Gerlich A.P. (2020): Advances in friction stir spot welding.– Critical Reviews in Solid State and Materials Sciences, vol.45, No.6, pp.457-534.
 
10.
Abdullah I.T. and Hussein S.K. (2018): Improving the joint strength of the friction stir spot welding of carbon steel and copper using the design of experiments method.– Multidiscipline Modeling in Materials and Structures, vol.14, No.5, pp.908-922.
 
11.
Piccini J.M. and Svoboda H.G. (2015): Effect of the tool penetration depth in Friction Stir Spot Welding (FSSW) of dissimilar aluminum alloys.– Procedia Materials Science, vol.8, pp.868-877, doi.org/10.1016/j.mspro.2015.04.147.
 
12.
Suryanarayanan R. and Sridhar, V.G. (2020): Experimental investigation on the influence of process parameters in Friction stir spot welded dissimilar aluminum alloys.– Materials Today: Proceedings, vol.27, No.1, pp.529-533, doi.org/10.1016/j.matpr.2019.11.319.
 
13.
Akinlabi E.T., Osinubi A.S., Madushele N., Akinlabi S.A. and Ikumapayi O.M. (2020): Data on microhardness and structural analysis of friction stir spot welded lap joints of AA5083-H116.– Data in brief, vol.33, p.106585, doi.org/10.1016/j.dib.2020.106585.
 
14.
Zhang G., Xiao C. and Ojo O. O. (2021): Dissimilar friction stir spot welding of AA2024-T3/AA7075-T6 aluminum alloys under different welding parameters and media.– Defence Technology, vol.17, No.2, pp.531-544, Apr. 2021, doi.org/10.1016/j.dt.2020.03.008.
 
15.
Haribalaji V., Boopathi S. and Asif M. M. (2022): Optimization of friction stir welding process to join dissimilar AA2014 and AA7075 aluminum alloys.– Materials Today: Proceedings, vol.50, No.5, pp.2227-2234, doi.org/10.1016/j.matpr.2021.09.499.
 
16.
Piccini J. M. and Svoboda H. G. (2015): Effect of pin length on Friction Stir Spot Welding (FSSW) of dissimilar Aluminum-Steel joints.– Procedia Materials Science, vol.9, pp.504-513, doi.org/10.1016/j.mspro.2015.05.023.
 
17.
Wang X., Morisada Y. and Fujii H. (2021): Flat friction stir spot welding of low carbon steel by double side adjustable tools.– Journal of Materials Science & Technology, vol.66, pp.1-9, doi.org/10.1016/j.jmst.2020.06.015.
 
18.
Piccini J. M. and Svoboda H. G. (2017): Tool geometry optimization in friction stir spot welding of Al-steel joints.– Journal of Manufacturing Processes, vol.26, pp.142-154, doi.org/10.1016/j.jmapro.2017.02.004.
 
19.
Garg A. and Bhattacharya A. (2017): Similar and dissimilar joining of AA6061-T6 and copper by single and multi-spot friction stirring.– Journal of Materials Processing Technology, vol.250, pp.330-344, doi.org/10.1016/j.jmatprotec.2017.07.029.
 
20.
Tiwan, Ilman M.N., Kusmono. (2021): Microstructure and mechanical properties of friction stir spot welded AA5052-H112 aluminum alloy.– Heliyon, vol.7, No.2, p.e06009, doi.org/10.1016/j.heliyon.2021.e06009.
 
21.
American Welding Society (1956): Resistance Welding Theory and Use.– Reinhold Publishing Corporation New York, Chapman & Hall, LTD, London.
 
22.
American Society for Testing and Materials (ASTM) (1999): Standard Practice for Microetching Metals and Alloys.– ASTM E 407-99, Annual book of ASTM standards, vol.03.01.
 
23.
Matsuda T., Hatano R., Ogura T., Suzuki R., Shoji H., Sano T. and Hirose, A. (2020): Effect of mismatch in mechanical properties on interfacial strength of aluminum alloy/steel dissimilar joints.– Materials Science and Engineering: A, vol.786, p.139437, doi.org/10.1016/j.msea.2020.139437.
 
24.
Kumar C. L., Jayakumar V. and Bharathiraja G. (2019): Optimization of welding parameters for friction stir spot welding of AA6062 with similar and dissimilar thicknesses.– Materials Today: Proceedings, vol.19, No.2, pp.251-255, doi.org/10.1016/j.matpr.2019.07.204.
 
25.
Yazdi S. R., Beidokhti B. and Haddad-Sabzevar M. (2019): Pinless tool for FSSW of AA 6061-T6 aluminum alloy.– Journal of Materials Processing Technology, vol.267, pp.44-51, doi.org/10.1016/j.jmatprotec.2018.12.005.
 
26.
Suresh S., Venkatesan K., Natarajan E. and Rajesh, S. (2020): Influence of tool rotational speed on the properties of friction stir spot welded AA7075-T6/Al2O3 composite joint.– Materials Today: Proceedings, vol.27, pp.62-67, doi.org/10.1016/j.matpr.2019.08.220.
 
27.
Matsuda T., Ogaki T., Hayashi K., Iwamoto C., Nozawa T., Ohata M. and Hirose A. (2022): Fracture dominant in friction stir spot welded joint between 6061 aluminum alloy and galvannealed steel based on microscale tensile testing.– Materials & Design, vol.213, p.110344, doi.org/10.1016/j.matdes.2021.110344.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top