ORIGINAL PAPER
Key Determinants for High-Alloyed Cast Irons for Mechanical Engineering
More details
Hide details
1
Polytechnic Institute, Jan Komenski University of Applied Sciences, Leszno, Poland
2
University of Technology, Faculty of Architekcture, Civil Engineering and Applied Arts ul. Rolna 43, 40-555, Katowice, Poland
Online publication date: 2022-03-17
Publication date: 2022-03-01
International Journal of Applied Mechanics and Engineering 2022;27(1):146-167
KEYWORDS
ABSTRACT
This work presents the factors determining cast iron, and particularly austenitic high-alloy cast iron as a construction material, which is ranked among the leading casting alloys of iron with carbon, mainly due to its very good service properties, which makes it dedicated as a material for automotive castings, pipe and fitting castings and components resistant to elevated temperatures, corrosion and abrasive wear. Construction materials currently used in industry have increasingly better properties and their potential is depleting quickly. This forces the manufacturers to adjust the requirements and production capabilities of cast iron using the most modern technologies that give the expected beneficial economic and operating effects. The paper quotes the results of research in the field of the offered technologies that give special surface features to machine parts made of cast iron by modernising the parameters of the technological process of obtaining high-alloy austenitic cast iron, i.e., by applying coatings, as well as by appropriate surface treatment, the aim of which is and reinforce the material surface with those properties which are important in a given application.
REFERENCES (72)
1.
Gloag J. and Bridgwater D. (1948): History of Cast Iron in Architecture.– Allen & Unwin, London.
2.
Smogorzewska A.: Propaganda of cruelty.– Knowledge and Life. Special issue (Mut. 1), Lost civilizations, pp.22-25.
3.
Sobczak J. and Tybulczuk J. (2003): Founding in the Development of Civilisation from the Dawn of Mankind to the Present Day.– Foundry Research Institute, Cracow.
4.
Sękowski K. (1997): Beginnings of copper alloy casting.– In: Modern trends in founding of non-ferrous metals, 19-29 November, Foundry Research Institute, Cracow, p.73.
5.
Gierdziejewski K. (1954): An Outline of Foundry History.– Stalinogród.
6.
Piaskowski J. (1966): Progressive traditions of the Polish foundry industry.– Foundry Review, No.7-8, p.221.
7.
Simpson L. B.: History of metal - casting industry.– Second Edition, American Foundrymans Society publication, p.16.
9.
Singer Ch., Holmyard E.J. and Hall A.R. (1958): A History of Technology.– Early Times To Fall of Anicient Empires Oxford AT the Clarendon Press, vol.1.
10.
Marseille Jaques Fonderie und Industries do XXIe Sielce (2002): Collective work Les Fondeurs De France, Editions Monsieur – le – Prince,.
13.
Cichocki T. (1938): Some metallurgical novelties in the construction of automobiles.– Technical Review, No.23, vol. LXXVII, pp.629-669.
14.
Burdecki F.(1938): Fundamentals of historical energetics.– Technical Review, No.23, vol. LXXVII, pp.536-537.
15.
Antoszewski B. and Radek N. (2008): Tribological and technological aspects of texturing of sliding pairs, with flat surfaces.– Tribology. Theory and Practice, No.2, pp.25-33.
16.
Antoszewski B. (2009): Production, properties and application of laser textured components.– Logistics, No.6, pp.88-100.
17.
Antoszewski B. (2010): Surface Layers with Texture. Forming with Selected Beam Technologies and Tribological Properties.– Kielce University of Technology, Kielce, p.222.
18.
Janus A. (2013): Structure Forming of Austenitic Ni-Mn-Cu Cast Irons.– Publishing House Wrocław, University of Technology, Wrocław.
19.
Podrzucki C. (1991): Cast Iron. Structure, Properties, Application.– Publisher. Z. G. STOP, Kraków, vol.1,2.
20.
Rickard A.J. (1981): Giesserei 68.– No.3, pp.61.
21.
Nickel O. (1981): Giesserei 68.– No.3, pp.59.
22.
Granat K. (2005): Wear-resistant Fe-C-Cr-Si Multicomponent Alloys for Castings and Surfaced Layers.– Publishing House of Wrocław, University of Technology, Wrocław.
23.
Beuth. (2018) DIN EN 1563:2019-04, Gießereiwesen - Gusseisen mit Kugelgraphit.– Deutsche Fassung EN_1563:2018; Beuth Verlag GmbH: Berlin, Germany.
24.
Ripplinger C., Gastens M., Zimmermann J., Pustal B., Broeckmann C., Schröder K-U. and Bühring-Polaczek A. (2021): Potential of Metallurgical Gradients in the Design of Structural Components Made of Nodular Cast Iron.– Materials, vol.14, No.9, p.2411,
https://doi.org/10.3390/ma1409....
25.
Janus A. (1995): Austenitic spheroidal nickel-manganese-copper cast iron.– Solidification of Metals and Alloys, No.24, 1995, PAN – Katowice, Branch PL, ISSN 0208-9386.
26.
Piaskowski J. (1986): Ductile Cast Iron.– Publisher. Inst. of Foundry, vol.1, Cracow.
27.
Tabor A. and Rączka J.S. (2005): Optimisation of the chemical composition and manufacturing technology of austenitic ductile cast iron.– Archivum Of The Foundry Industry, Yearbook 5, No.17, PAN-Katowice, PL ISSN 1642-5308.
28.
Jura S. and Jura Z. (2001): Influence of the chemical composition and degree of spheroidization of graphite on the mechanical properties of cast iron.– Archive of Foundry Engineering, Yearbook 1, No.2/2, PAN-Katowice, PL ISSN 1642-5308.
29.
Alp T., Wazzan A.A. and Yilmaz F. (2005): Microstructure - property relationships in cast iron.– The Arabian Journal for Science and Engineering, vol.30, No.2B, pp.163-175.
30.
Double D.D. and Hellawell A. (1969): The structure of flake graphite in Ni-C eutectic alloy.– Acta Metallurgica, vol.17, pp.1083-1083.
31.
Hsu C.H. and Chuang T.L. (2001): Influence of stepped austempering process on the fracture toughness of austempered ductile iron.– Metallurgical and Materials Transactions, vol.32A, pp.2509-2514.
32.
Studnicki A., Jura S., Kilarski J. and Suchoń J. (1995): Influence of chromium cast iron structure parameters on tensile strength and impact toughness.– Solidification of Metals and Alloys, vol.24, pp.107-112.
33.
Gulajev A.P. (1967): Metallography.– WNT Silesia, Katowice.
34.
Atametr S.E., and Bhadeshia H.K.D.H. (1987): Stability, wear resistance and microstructure of Fe-Cr-C and Fe-Cr-Si-C hard facing alloys.– Heat Treatment, Proc. Int. Conf., London, pp.39-44.
35.
Tchórz A., Boroń Ł. and Książek M.(2008): Structural formation and properties of Cr3C2 - NiCr carbide coatings applied by plasma spraying on the surface of ductile iron castings.– Proceedings of the Foundry Research Institute Cracow, vol. XLVIII, Notebook 2, DOI: 10.7356/iod.2008.8.
36.
Granat K.(1993): Untersuchungen gegossener Fe-Cr-Si-C- Legierungen hinisichtlich Oxidations-und Korrosionsbeständigkeit sowie im Hinblick auf ihr Verkalten bei erhöhten Temperaturen.– Wissen-schaftlicher Bericht, RWTH Aachen,.
37.
Babiak M. (2015): Application of coatings on the piston bearing surface as a method to reduce wear and friction losses in the piston-crank mechanism of an internal combustion engine.– [Engineer of the future, Strengthening didactic potential of Poznań University of Technology - Project co-financed from EU funds under EFS], Poznań University of Technology Publishing House, Logistic 3/2015.
38.
Deuss T., Ehnis H., Rose R. and Künzel R. (2011): Reibleistungsmessungen am Befeuerten Dieselmotor.– Einfluss von Kolbenschaftbeschichtungen, MTZ 4/2011.
39.
Kotnarowski A. (2009): Constituting protective layers from copper and molybdenum nanopowders in tribological processes.– Publishing House of Radom University of Technology, Radom.
40.
Deuss T., Ehnis H., FreierR. and Künzel R. (2010): Reibleistungsmessungen am Befeuerten Dieselmotor. Potenziale der Kolbengruppe.– MTZ 5/2010.
41.
Deuss T., Ehnis H., Basset M. and Bisordi A. (2011): Reibleistungsmessungen am Befeuerten Dieselmotor.Zyklusrelevante CO2-Ersparnis.– MTZ 12/2011.
42.
Kennedy M., Hoppe S. and Esser J. (2012): Piston ring coating reduces gasoline engine friction.– MTZ, No.5/2012.
43.
Boghe M. (2009): Weniger Emissionen mit DLC-Beschichtung. Reibverhalten im Ventiltrieb.– MTZ, No.03/2009.
44.
Fahr M., Hanke W., Klimesch Ch. and Rehl A. (2011): Reibungsreduzierung bei Kolbensystemen im Ottomotor.– MTZ, No.07-08/2011.
45.
Kałużny J. (2013): Experimental Application of Carbon Nanotubes in the Design of a Reciprocating Internal Combustion Engine.– Poznań University of Technology Publishing House.
46.
Kaźmierczak A.(2002): Influence of Application of Cerium Metal Coating on Tribological Processes in Ring Sealing of Internal Combustion Engines.– Publishing House of Wrocław University of Technology, Wrocław.
47.
Jaskólski J. and Jakubiec J. (1994): Investigation of ceramic coatings of diesel engine piston by computer simulation method.– Interial Combustion Engine Journal of KONES, vol.1, No.1, Warsaw-Lublin, pp.215-226.
48.
Van-Stappen M., Kerkhofs M., Stals L.M. and Queayhaegens C. (1996): State of the art. for the industrial use of ceramic PVD coatings.– Eur. J. Mech. Eng., vol.41, No.2, pp.83-88.
49.
Bunshah R.F. (1984): Overview of coating technologies for large scall metallurgical, optical, and electronic, application.– Journal of Vacuum Science and Technology, vol.B2, No.4, pp789-799.
50.
Burakowski T. and Wierzchoń T. (1995): Surface Engineering of Metals.– Scientific and Technical Publishers, Warszawa.
51.
Nikić Z. and Radojnić S. (1990): Hard coatings on tools for hot and cold deformation.– Conference materials INSYCONT’90, Cracow, pp.153-158,.
52.
Brodowicz K., Ghoneam S. M., Kwaśniak E., Mikoś M., Osiński G., Pasierski J. and Stupnicki J. (1998): The effect of ceramic coatings on the initiation and development of scuffing phenomena.– Issues of Machine Exploitation, vol.3-4 (99-100), Warszawa, PWN, pp.431-441.
53.
Borkowski W., Cichorz P., Pudłowski M., Skowronek H. and Waszczuk K. (2019): Influence of machinability changes of ductile cast iron on manufacturing costs.– Mechanik, vol.92, No.11, DOI:
https://doi.org/10.17814/mecha....
54.
Paszeczko M. and Kindrachuk M. (2017): Tribology.– Lublin University of Technology, Lublin 2017, pp.88-89.
55.
Kalisz J., Czerwiński A., Janczewski Ł., Czechowski K., Polowski W. and Toboła D. (2013): Selected aspects of modification of the geometric structure of the surface after milling by rolling and sliding burnishing.– VII Conference of the School of Machining, Mierzęcin, 11-13 September 2013.
57.
Kiszka P. (2013): Study of mechanical and thermal interactions in cutting ductile cast iron with blades from nitrogen ceramics and CBN.– PhD. Thesis, Opole University of Technology, Faculty of Mechanical Engineering, Opole.
58.
Grzesik W., Rech J., Żak K. and Claudin C. (2009): Machining performance of pearlitic-ferritic nodular cast iron with coated carbide and silicon nitride ceramic tools.– International Journal of Machine Tools & Manufacture, vol.49, No.2, pp.125-133.
59.
Sumitomo Electric (1999): NS260 and NS260C - new Si3N4 nitride ceramics for high speed machining of cast iron.– Mechanic, vol.2, p.66.
60.
Skrzypek. J.S. and Przybyłowicz K. (2012): Engineering of Metals and Their Alloys.– AGH Publishing House, Cracow.
61.
Schneider J. and Richter G. (2006): Eine keramik für viele fälle.– Werkstatt Und Betrieb, No.6, pp.51-55.
62.
Żak K. and Grzesik W. (2008): Peculiarities of the cutting process of spheroidal cast iron with perlitic-ferritic structure.– II Conference School of Machining, Institute of Advanced Manufacturing Technology, Kraków.
63.
Feldshtein E. and Pacha-Gołębiowska H. (2009): Influence of conditions of finishing turning on surface properties of elements from GJS2131 alloy cast iron.– Materials Engineering, vol.30, No.6, pp.509-515.
64.
Novák P., Bellezze P., Cabibbo T., Gamsjager M., Wiessner E., Rajnovic M., Jaworskiej D., Hanus L., Szyszkin P., Goel A. and Goel G. (2021): Solutions to critical raw material problems in iron-based alloys.– Materials, vol.14, Article ID 899, p.35,
https://doi.org/10.3390/ma1404....
65.
European Commission (2020): A new industrial strategy for Europe.– COM (2020) 102 final, European Commission: Brussels, Belgium.
66.
Committee A04 (2019): Specification for ductile iron castings.– ASTM International: West Conshohocken, PA, USA.
67.
ISO2892 (2007): Austenitic cast irons.– Technical Committee: ISO/TC25 Cast irons and pig irons.
68.
Książek M., Nejman I. and Boroń Ł. (2021): Investigation on Microstructure, Mechanical and Wear Properties of HVOF Sprayed Composite Coatings (WC–Co + CR) On Ductile Cast Iron.– Materials, vol.14, No.12, Article Id.3282, p.20,
https://doi.org/10.3390/ma1412....
69.
Pulsford J., Venturiego F., Pala Z, Kamnis S. and Hussain T. (2019): Application of HVOF WC-Co-Cr coatings to the inner surface of small cylinders: Effect of inner diameter on resistance to use.– Wear, vol.432-433, Article Id.202965, p.10,
https://doi.org/10.1016/j.wear....
70.
Liu Y., May W., Meng S., Liu C., Long L. and Tang S. (2017): A comparative study on wear and corrosion behavior of WC-10Co-4Cr coatings sprayed with HVOF VAF.– Surf. Eng., vol.33, pp.63-71.
71.
Zha B.L, Qiao S.L., Huang D.Y., He W., Zha Z.H. and Li X.B. (2013): Study on the properties of nanostructured and conventional WC-12Co coatings deposited by HVO/AF method.– Adv. Math. Res., vol.709, pp.166-171.
72.
Antonov M., Veinthal R., Yung DL., Katušin D. and Hussainova I. (2015): Mapping of impact wear resistance of WC-Co cemented carbides.– Wear, vol.332, pp.971-978.