ORIGINAL PAPER
Kinematic Analysis and Synthesis of a Compound Epicyclic Gear Mechanism with Intermeshing Satellites
 
More details
Hide details
1
Механика, машинно инженерство и топлотехника, Технически университет София, България, Bulgaria
 
2
Механика, машинно инженерство и топлотехника,, TU, Bulgaria
 
3
Механика, машинно инженерство и топлотехника, Технически университет София, Bulgaria
 
4
Mechanics, mechanical engineering and thermal engineering, Sofia Technical University, Bulgaria, Bulgaria
 
These authors had equal contribution to this work
 
 
Submission date: 2024-08-01
 
 
Final revision date: 2024-09-02
 
 
Acceptance date: 2024-12-17
 
 
Online publication date: 2025-03-06
 
 
Publication date: 2025-03-06
 
 
Corresponding author
Silvia Dechkova   

Mechanics, mechanical engineering and thermal engineering, Sofia Technical University, Bulgaria, 5 Burgas Road, Sliven, 8800, Sliven, Bulgaria
 
 
International Journal of Applied Mechanics and Engineering 2025;30(1):36-52
 
KEYWORDS
TOPICS
ABSTRACT
In the present work, a study has been conducted on the possible kinematic configurations of a given gear mechanism with intermeshing satellites to compare the values of the transmitted torques. As a result of this analysis, principal schemes of compound epicyclic gear mechanisms achieving high values of transmitted torques at the output have been proposed. Kinematic synthesis of the mechanisms with optimal gear ratios achieving the highest values of output torques has been performed.
REFERENCES (20)
1.
Chen H. and Chen X-A. (2022): Recirculation of parallel-connected planetary gear trains.– Chinese Journal of Mechanical Engineering, vol.35, No.27, pp.1-13.
 
2.
Wang C. (2019): High power density design for planetary gear transmission system.– Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol.233, No.16, pp.5647-5658.
 
3.
Yang W., Ding H., Zi B. and Zhang D. (2017): New graph representation for planetary gear trains.– Journal of Mechanical Design, vol.140, No.11, pp.1-10.
 
4.
Guo Y. and Parker R. (2010): Dynamic modeling and analysis of a spur planetary gear involving tooth wedging and bearing clearance nonlinearity.– European Journal of Mechanics, A/Solids, vol.29, No.6, pp.1022-1033.
 
5.
Xue H. and Li L. (2023): Motion, static force, and efficiency analysis of planetary gear transmission based on graph theory.– Applied Sciences, vol.13, No.19, pp.1-17.
 
6.
Hariharan M., Kаup V. and Babu H. (2022): A computational methodology for synthesis of epicyclic gear transmission system configurations with multiple planetary gear trains.– FME Transactions, vol.50, pp.433-440.
 
7.
Ding H. and Cai C. (2020): Patent analysis and structural synthesis of epicyclic gear trains used in automatic transmissions.– Applied Sciences, vol.10, No.82, pp.1-25.
 
8.
Mathis R. and Remond Y. (2009): Kinematic and dynamic simulation of epicyclic gear trains.– Mechanism and Machine Theory, vol.44, No.2, pp.412-424.
 
9.
Chen Z. and Shao Y. (2013): Dynamic simulation of planetary gear with tooth root crack in ring gear.– Engineering Failure Analysis, vol.31, pp.8-18.
 
10.
Drewniak J., Kądziołka T., Rysiński J. and Stańco K. (2023): Power flow in coupled three-row series-parallel planetary gear system, part i: without power losses.– Energies, vol.16, No.7347, pp.1-3.
 
11.
Shanmukhasundaram V., Rao Y. and Regalla S. (2019): Algorithms for detection of degenerate structure in epicyclic gear trains using graph theory.– Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol.41, No.11, pp.1-16.
 
12.
An K., Pankratov J. and Lazurkevich A. (2022): Kinematic analysis of an intermediate roller in a planetary gear. Russian Engineering Research, vol.42, No.6, pp.573-578.
 
13.
Brumercik F., Tomasikova M. and Nieoczym A. (2015): Epicyclic gear train synthesis.– Communications - Scientific Letters of the University of Zilina, vol.17, No.3, pp.47-50.
 
14.
Pennock G. and Alwerdt J. (2008): A study of the duality between epicyclic gear trains and beam systems.– In Proceedings of the ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, USA. ASME, vol.2, pp.359-370.
 
15.
Marciniec A., Sobolak M. and Połowniak P. (2022): Graphical method for the analysis of planetary gear trains. Alexandria Engineering Journal, vol.61, No.5, pp.4067-4079.
 
16.
Tsai C., Huang C. and Lin J. (2010): Kinematic analysis of planetary gear systems using block diagrams.– Journal of Mechanical Design, vol.132, No.6, pp.1-10.
 
17.
Xue H.,and Li L. (2023): Motion, static force, and efficiency analysis of planetary gear transmission based on graph theory.– Applied Sciences, vol.13, No.19, pp.1-17.
 
18.
Morlin F., Carboni A., Baldissera de Souza M. and Martins D. (2021): Degeneracy detection in epicyclic gear trains using a matroid-based algorithm.– Multibody Mechatronic Systems, MuSMe 2021, Mechanisms and Machine Science, Springer, Cham, vol.94, pp.11-18.
 
19.
Liu J., Yu L., Zeng Q. and Li Q. (2018): Synthesis of multi-row and multi-speed planetary gear mechanism for automatic transmission.– Mechanism and Machine Theory, vol.128, pp.616-627.
 
20.
Talpasanu I., Yih T. and Simionescu P. (2008): A general method of kinematic analysis of parallel axes epicyclic gear trains based on graph-cycle matroid theory.– DETC2005-84119, pp.647-656.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top