ORIGINAL PAPER
Limit Load Solutions for SEN(T) Specimens – 2D and 3D Problems
 
 
 
More details
Hide details
1
Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Department of Manufacturing Engineering and Metrology, Al. 1000-lecia PP 7, 25-314 Kielce, Poland
 
 
Online publication date: 2016-09-10
 
 
Publication date: 2016-08-01
 
 
International Journal of Applied Mechanics and Engineering 2016;21(3):569-580
 
KEYWORDS
ABSTRACT
This paper deals with the limit load solutions for SEN(T) specimens under plane stress and plane strain conditions. The existing solutions are verified using the Finite Element Method and extended to 3D cases. The numerical results can be used to assess the strength of a structural element with a defect. This paper is a verification and extension of the author’s previous paper [2].
REFERENCES (30)
1.
Neimitz A., Dzioba I., Graba M. and Okrajni J. (2008): The assessment of the strength and safety of the operation high temperature components containing crack. – Kielce University of Technology Publishing House, Kielce (in Polish).
 
2.
Neimitz A., Dzioba I., Graba M., Okrajni J. (2008). The assessment of the strength and safety of the operation high temperature components containing crack. Kielce University of Technology Publishing House, Kielce. (in Polish).
 
3.
Graba M. (2013): Numerical verification of the limit load solutions for single edge notch specimen in tension. – Archives of Civil and Mechanical Engineering, vol.13, No.1, pp.45-56.
 
4.
Graba M. (2013). Numerical verification of the limit load solutions for single edge notch specimen in tension Archives of Civil and Mechanical Engineering. 13 (1): 45-56.
 
5.
Graba M. (2013): Extension of the concept of limit loads for 3D cases for a centrally cracked plate in tension. – Journal of Theoretical and Applied Mechanics, vol.51, No.2, pp.349-362.
 
6.
Graba M. (2013). Extension of the concept of limit loads for 3D cases for a centrally cracked plate in tension Journal of Theoretical and Applied Mechanics. 51 (2): 349-362.
 
7.
Graba M. (2009): Numerical analysis of the mechanical fields near the crack tip in the elastic-plastic materials. 3D problems. – PhD Dissertation, Kielce University of Technology - Faculty of Mechatronics and Machine Building, 387 pages, Kielce 2009 (in Polish).
 
8.
Graba M. (2009). Numerical analysis of the mechanical fields near the crack tip in the elastic-plastic materials. 3D problems. PhD Dissertation, Kielce University of Technology - Faculty of Mechatronics and Machine Building, 387 pages, Kielce 2009 (in Polish).
 
9.
Kumar V., German M.D. and Shih C.F. (1981): An engineering approach for elastic-plastic fracture analysis. – Electric Power Research Institute, Inc. Palo Alto, CA (1981), EPRI Report NP-1931.
 
10.
Kumar V., German M.D., Shih C.F. (1981). Electric Power Research Institute, Inc., Palo Alto, CA. (1981), EPRI Report NP-1931.
 
11.
Miller A.G. (1988): Review of limit loads of structures containing defects. – International Journal of Pressure Vessels and Piping, vol.32, pp.197–327.
 
12.
Miller A.G. (1988). Review of limit loads of structures containing defects International Journal of Pressure Vessels and Piping. 32: 197-327.
 
13.
Chauhan S., Chattopadhyay J. and Dutta B.K. (2016): Limit load equations for miniature single edge notched tensile specimens. – Transactions of the Indian Institute of Metals, March 2016, vol.69, No.2, pp 641-646.
 
14.
Chauhan S., Chattopadhyay J., Dutta B.K. (2016). Limit load equations for miniature single edge notched tensile specimens Transactions of the Indian Institute of Metals. 69 (2): 641-646.
 
15.
ADINA, 2008a, ADINA 8.7.3: ADINA: Theory and Modeling Guide - Volume I: ADINA, Report ARD 08-7, ADINA R&D, Inc., 2008.
 
16.
ADINA. (2008a). ADINA R&D, Inc. 2008.
 
17.
ADINA 2008b, ADINA 8.7.3: ADINA: User Interface Command Reference Manual - Volume I: ADINA Solids & Structures Model Definition, Report ARD 08-6, ADINA R&D, Inc., 2008.
 
18.
ADINA. (2008b). ADINA R&D, Inc. 2008.
 
19.
Graba M. (2016): Numerical verification of the fully plastic solution and elastic-plastic estimation formulas for double edge notch plate in tension (forthcoming).
 
20.
Graba M. (2016). Numerical verification of the fully plastic solution and elastic-plastic estimation formulas for double edge notch plate in tension. (forthcoming).
 
21.
Brocks W., Cornec A., Scheider I. (2003): Computational aspects of nonlinear fracture mechanics. – Bruchmechanik, GKSS-Forschungszentrum, Geesthacht, Germany, Elsevier pp.127-209.
 
22.
Brocks W., Cornec A., Scheider I. (2003). Computational aspects of nonlinear fracture mechanics. 127-209. Elsevier, Geesthacht, Germany.
 
23.
Brocks W. and Scheider I. (2003): Reliable J-values. Numerical aspects of the path-dependence of the J-integral in incremental plasticity. – Bruchmechanik, GKSS-Forschungszentrum, Geesthacht, Germany, Elsevier pp.127-209.
 
24.
Brocks W., Scheider I. (2003). Reliable J-values. Numerical aspects of the path-dependence of the J-integral in incremental plasticity. 127-209. Elsevier, Geesthacht, Germany.
 
25.
Graba M. and Gałkiewicz J. (2007): Influence of the crack tip model on results of the finite element method. – Journal of Theoretical and Applied Mechanics, Warsaw, vol.45, No.2, pp.225-237.
 
26.
Graba M., Gałkiewicz J. (2007). Influence of the crack tip model on results of the finite element method Journal of Theoretical and Applied Mechanics, Warsaw. 45 (2): 225-237.
 
27.
Kim Y., Zhu X.K. and Chao Y.J. (2001): Quantification of constraint on elastic-plastic 3D crack front by the J-A2 three-term solution. – Engineering Fracture Mechanics, vol.68, pp.895-914.
 
28.
Kim Y., Zhu X.K., Chao Y.J. (2001). Quantification of constraint on elastic-plastic 3D crack front by the J-A2 three-term solution Engineering Fracture Mechanics. 68: 895-914.
 
29.
Kim Y., Chao Y.J. and Zhu X.K. (2003): Effect of specimen size and crack depth on 3D crack-front constraint for SENB specimens. – International Journal of Solids and Structures, vol.40, pp.6267-6284.
 
30.
Kim Y., Chao Y.J., Zhu X.K. (2003). Effect of specimen size and crack depth on 3D crack-front constraint for SENB specimens International Journal of Solids and Structures. 40: 6267-6284.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top