ORIGINAL PAPER
Loop-Shaping ℋ Control of an Aeropendulum Model
 
More details
Hide details
1
Instituto Federal do Paraná, Av. Dr Tito, 801, Jacarezinho – PR, Universidade Tecnológica Federal do Paraná, Programa de Pós-Graduação em Engenharia Mecânica, Av. Alberto Carazzai, 1640, Cornélio Procópio – PR, Brazil
 
2
Instituto Federal do Paraná, Av. Dr Tito, 801, Jacarezinho – PR, Brazil
 
3
Universidade Tecnológica Federal do Paraná, Av. Alberto Carazzai, 1640 Cornélio Procópio – PR, Brazil
 
 
Online publication date: 2021-12-07
 
 
Publication date: 2021-12-01
 
 
International Journal of Applied Mechanics and Engineering 2021;26(4):1-16
 
KEYWORDS
ABSTRACT
This work presents a mathematical model of an aeropendulum system with two sets of motors with propellers and the design and simulation of a loop-shaping ℋ control for this system. In this plant, the objective is to control the angular position of the pendulum rod through the torque generated by the thrust of the motorized propellers at the end of the rod’s axis. The control design is obtained by first using feedback linearization and then designing the ℋ controller using the resulting linear system. For the control strategy validation, simulations were conducted in the Matlab/Simulink® environment, and the weighting functions for the ℋ controller were adjusted to obtain the desired performance and stability of the closed-loop system. The simulation results show the efficiency of the applied methodology.
 
REFERENCES (21)
1.
Ogata Katsuhiko (2010): Modern Control Engineering.– Prentice Hall do Brasil.
 
2.
Furuta K., Yamakita M. and Kobayashi S. (1992): Swing-up control of inverted pendulum using pseudo-state feedback.– Journal of Systems and Control Engineering, vol.206, No.6, pp.263-269.
 
3.
Antonio-Cruz M., Hernadez-Guzman V.M. and Silva-Ortigoza R. (2018): Limit cycle elimination in inverted pendulums: furuta pendulum and pendubot.– IEEE Access, vol.6, pp.30317-30332,.
 
4.
Zabihifar S.H., Yushchenko A.S. and Navvabi H. (2020): Robust control based on adaptive neural network for Rotary inverted pendulum with oscillation compensation.– Neural Computing and Applications, vol.32, pp.14667-14679.
 
5.
Blondin M.J., Pardalos P.M. (2020): A holistic optimization approach for inverted cart-pendulum control tuning.– Soft Computing, vol.24, pp.4343-4359.
 
6.
Roose A.I., Yahya S. and Al-Rizzo H. (2017): Fuzzy-logic control of an inverted pendulum on a cart.– Computers and Electrical Engineering, vol.61, pp.31-47.
 
7.
Grasser F., D’Arrigo A., Colombini S. and Rufer A.C. (2002): JOE: A Mobile, Inverted Pendulum.– IEEE Transactions on Industrial Electronics, vol.49, No.1, pp.107-114.
 
8.
Ye W., Li Z., Yang C., Sun J., Su C.Y. and Lu R. (2016): Vision-based human tracking control of a wheeled inverted pendulum robot.– IEEE Transactions on Cybernetics, vol.46, No.11, pp.2423-2434.
 
9.
Johnson T., Zhou S., Cheah W., Mansell W., Young R. and Watson S. (2020): Implementation of a perceptual controller for an inverted pendulum robot.– Journal of Intelligent and Robotic Systems, vol.99, pp.683-692.
 
10.
Job M.M. and Jose P.S.H. (2015): Modeling and control of mechatronic aeropendulum.– IEEE Sponsored 2 nd International Conference on Innovations in Information Embedded and Communication Systems, vol.978, No.1, pp.1-5.
 
11.
Habib G., Miklos A., Enikov E.T., Stepan G. and Rega G. (2015): Nonlinear model-based parameter estimation and stability analysis of an aero-pendulum subject to digital delayed control.– International Journal Dynamic Control, vol.5, pp.629-643.
 
12.
Saleem O., Rizwan M., Zeb A.A., Ali A.H. and Saleem M.A. (2019): Online adaptive PID tracking control of an aero-pendulum using PSO-scaled fuzzy gain adjustment mechanism.– Soft Computing, Springer, vol.24, pp.10629-10643.
 
13.
Jaber M., Khan A. and Khan W.A. (2017): Robust nonlinear geometric angle tracker for aero pendulum.– Imperial Journal of Interdisciplinary Research, pp.93-99.
 
14.
Ghanbari M., Bahraini M. and Yazdanpanah M.J. (2018): Continuous control of sampled data systems with robustness against bounded measurement errors.– Transactions of the Institute of Measurement and Control, vol.40, No.10, pp.3125-3133.
 
15.
Gültekin Y. and Tascioglu Y. (2011): Pendulum positioning system actuated by dual motorized propellers.– 6 th International Advanced Technologies Symposium, pp.6-11.
 
16.
Sampaio R.C., Becker M., Siqueira A. A. G, Breganon R., de Salvi F. and Belo E.M. (2011): Model-based optimal h∞ controller on the stability of a 2-dof Quadrotor.– Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, Parts A and B. Washington, DC, USA. vol.3., pp.955-962.
 
17.
Breganon R., Montezuma M.A.F, Souza M.M., Lemes R.C. and Belo E.M. (2018): Optimal H infinity controller applied to a Stewart platform.– International Journal of Advanced Engineering Research and Science, vol.5, No.7, pp.51-59.
 
18.
Lathi B.P. (2007): Signals and Linear Systems.– 2 ed. Porto Alegre: Bookman.
 
19.
Oliveira V.A., Aguiar M.L. and Vargas J.B. (2016): Control Engineering: Fundamentals and Laboratory Classes.– Elsevier, Rio de Janeiro.
 
20.
Doyle J.C., Glover K., Khargonekar P.P. and Francis B.A. (1989): State-space solutions to standard H2 and H∞ control problems.– IEEE Transactions on Automatic Control, vol.34, No.8, pp.831-847.
 
21.
Zhou K., Doyle J.C. and Glover K. (1995): Robust and Optimal Control.– Upper Saddle River: Prentice Hall.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top