ORIGINAL PAPER
MECHANICAL CHARACTERIZATION AND IMPACT RESISTANCE OF A NOVEL HYBRID COMPOSITE BASED ON SALVADORA PERSICA ROOTS AND GLASS FIBERS
More details
Hide details
1
Kasdi Merbeh University Ouargla, BP.511, 30000, ALGERIA
2
Research Centre in Industrial Technologies; Algiers, ALGERIA
3
M’hamed Bougara University of Boumerdes, Boumerdes, ALGERIA
Online publication date: 2024-06-19
Publication date: 2024-06-27
International Journal of Applied Mechanics and Engineering 2024;29(2):39-51
KEYWORDS
ABSTRACT
The observation of fibers in salvadora persica roots inspired us to consider the idea of using them as reinforcement to create an innovative composite. The current work focuses on the volumetric mass density, extraction, molding, and mechanical testing of composites and hybrid composites made from salvadora persica roots and glass fibers reinforced with two types of polyester matrix, chosen due their characteristics suitable for use in different orientations. Various extraction and combination methods have been used to identify an optimal approach for obtaining fibers from salvadora persica roots, considering its chemical composition (hemicellulose, pectin, and lignin). In this investigation, the hand lay-up method was used to mold specimens with different geometries. The composite and hybrid composite were combined with a polyester matrix and subjected to various mechanical tests namely; tensile, impact resistance, and water absorption. The results indicate that reinforcing polyester resins with SP fibers, whether long or short, enhances the overall mechanical properties of the composite. Additionally, improved adhesion between salvadora persica roots fibers and resin was observed.
ACKNOWLEDGEMENTS
The authors thank to Management of CRTI and LITEP for supporting this research by helping during experiment tests.
REFERENCES (63)
1.
Meenakshi C.M. and Krishnamoorthy A. (2018): Preparation and mechanical characterization of flax and glass fiber reinforced polyester hybrid composite laminate by hand lay-up method.– Materials Today: Proceedings, vol.5, No.13, pp.26934-26940.
2.
Navaneethakrishnan P. and Shankar S. (2013): Characterization of natural fiber and composites - A review.– Journal of Reinforced Plastics and Composites, vol.32, No.19, pp.1457-1476.
3.
Joshi S.V. and Drzal L.T. (2004): Are natural fiber composites environmentally superior to glass fiber reinforced composites?.– Journal of Reinforced Plastics and Composites, vol.35, No.3, pp.371-376.
4.
Bavan D.S. and Kumar G.C.M. (2016): Potential use of natural fiber composite materials in India.– Journal of Reinforced Plastics and Composites, vol.29(24), pp.3600-3613.
5.
George J. and Sreekala M.S. (2001): A review on interface modification and characterization of natural fiber reinforced plastic composites.– Polymer Engineering and Science, vol.41, No.9, pp.1471-1485.
6.
Chaaben R. and Taktak R. (2020): Innovative biocomposite development based on the incorporation of Salvadora persica in acrylic resin for dental material.– Journal of Thermoplastic Composite Materials, vol.35, No.11, pp.1815-1831.
7.
Savaş S. (2019): Structural properties and mechanical performance of Salvadora persica L (Miswak) reinforced polypropylene composites.– Polymer Composites, vol.40, No.S1, pp.E663-E677.
8.
Jassim S.A. and Hammud K.K. (2021): Valuable dental materials from Salvadora persica plants, medico-legal update.– Medico-Legal Update, vol.21, No.1, pp.893-903.
9.
El Ghali A. and Ben Marzoug I. (2012): Separation and characterization of new cellulosic fibres from the Juncus acutus L plant.– BioResources, vol.7, No.2, pp.2002-2018.
10.
Ben Marzoug I. and Sakli F. (2010): Separation of ultimate and technical esparto grass fibres.– Journal of the Textile Institute, vol.101, No.12, pp.1050-1056.
11.
Abraham E. and Deepa B. (2011): Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach, Carbohydrate Polymers.– Carbohydrate Polymers, vol.86, No.4, pp.1468-1475.
12.
Andersons J. and Sp E. (2005): Science and strength distribution of elementary flax fibres.– Composites Science and Technology, vol.65, No.3-4. pp.693-702.
13.
Perremans D. and Verpoest I. (2018): Investigation of the tensile behavior of treated flax fibre bio-composites at ambient humidity.– Composites Science and Technology, vol.159, pp.1-182.
14.
Sangregorio A. and Guigo N. (2019): All ‘green’ composites comprising flax fibres and humins’ resins.– Composites Science and Technology, vol.171, pp.70-77.
15.
Baley C. and Lan M. (2018): Compressive and tensile behaviour of unidirectional composites reinforced by natural fibres: Influence of fibres (flax and jute), matrix and fibre volume fraction.– Materials Today Communications, vol.16, pp.300-306.
16.
Akın E. and Rashidi M. (2021): Axial behavior of concrete confined with flax fiber-reinforced polymers.– Materials Today Communications, vol.28, pp.102646.
17.
Mazzanti V. and Pariante R. (2019): Reinforcing mechanisms of natural fibers in green composites: Role of fibers morphology in a PLA/hemp model system.– Composites Science and Technology, vol.180, pp.51-59.
18.
Ramezani Kakroodi A. and Kazemi Y. (2013): Mechanical, rheological, morphological and water absorption properties of maleated polyethylene/hemp composites: Effect of ground tire rubber addition.– Composites Part B: Engineering, vol.51, pp.33-344.
19.
Sivakumar S. and Vignesh V. (2021): Experimental investigation on tensile and flexural properties of randomly oriented treated palmyra fibre reinforced polyester composites.– Materials Today: Proceedings, vol.46, pp.7556-7560.
20.
Bouakba M. and Bezazi A. (2013): Cactus fibre / polyester biocomposites : Manufacturing , quasi-static mechanical and fatigue characterisation.– Composites Science and Technology, vol.74, pp.150-159.
21.
Abderrezak B. and Bouakba M. (2009): Elaboration of cactus fibre composite laminate and characterisation under static and fatigue loading.– ICCM-17, Edinburgh.
22.
Mahrouz M. and Malainine M.E. (2003): Structure and morphology of cladodes and spines of Opuntia ficus-indica . Cellulose extraction and characterisation.– Carbohydrate Polymers, vol.51, No.1, pp.77-83.
23.
Masri T. and Ounis H. (2018): Characterization of new composite material based on date palm leaflets and expanded polystyrene wastes;.– Construction and Building Materials, vol.164, pp.410-418.
24.
Al-Kaabi K. and Al-Khanbashi A. (2005): Date palm fibers as polymeric matrix reinforcement: DPF/polyester composite properties.– Polymer Composites, vol.26, No.5, pp.604-613.
25.
Alawar A. and Hamed A.M. (2009): Characterization of treated date palm tree fiber as composite reinforcement.– Composites Part B, vol.40, No.7, pp.601-606.
26.
Mohammad S. and Zeinaly F. (2014): Date palm wood flour as filler of linear low-density polyethylene.– Composites Part B, vol.56, pp.137-141.
27.
Lekrine A. and Belaadi A. (2022): Structural, thermal, mechanical and physical properties of Washingtonia filifera fibres reinforced thermoplastic biocomposites.– Materials Today Communications, vol.31, pp.103574.
28.
Mohanta N. and Acharya S.K. (2015): Investigation of mechanical properties of luffa cylindrica fibre reinforced epoxy hybrid composite.– International Journal of Engineering, Science and Technology, vol.7, No.1, pp.1 10.
29.
Pavithran C. and Mukherjee P.S. (1991): Coir-glass intermingled fibre hybrid composites.– Journal of Reinforced Plastics and Composites, vol.10, No.1, pp.91-101.
30.
Kakou C.A. and Essabir H. (2015): Hybrid composites based on polyethylene and coir / oil palm fibers.– Journal of Reinforced Plastics and Composites, vol.34, No.20, pp.1-14.
31.
Rout J. and Misra M. (2001): The influence of fibre treatment on the performance of coir-polyester composites.– Composites Science and Technology, vol.61, No.9, pp.1303-1310.
32.
Venkatesh R.P. and Ramanathan K. (2016): Tensile , flexual , impact and water absorption properties of natural fibre reinforced polyester hybrid composites.– Fibres and Textiles in Eastern Europe, vol.24, No.117, pp.90 94.
33.
Thwe M.M. and Liao K. (2002): Effects of environmental aging on the mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composites.– Composites - Part A: Applied Science and Manufacturing, vol.33, No.1, pp.43-52.
34.
Kumar N. and Mireja S. (2017): Light-weight high-strength hollow glass microspheres and bamboo fiber based hybrid polypropylene composite: A strength analysis and morphological study.– Composites Part B: Engineering, vol.109, pp.277-285.
35.
Lobo A. and Haseebuddin M.R. (2020): Mechanical behavior of disposed fiberglass filled bamboo mat reinforced polyester composite.– Materials Today: Proceedings, vol.46, pp.6004-6011.
36.
Sravya, S. and Raghavendra D. (2017): Influence of mechanical properties on hybried composites.– International Journal of Mechanical Engineering and Technology, vol.8, No.11, pp.552-560.
37.
Atiqah A. and Maleque M.A. (2014): Development of kenaf-glass reinforced unsaturated polyester hybrid composite for structural applications.– Composites Part B, vol.56, pp.68-73.
38.
Ghani M.A.A. and Salleh Z. (2012): Mechanical properties of kenaf / fiberglass polyester hybrid composite.– Procedia Engineering, vol.41, pp.1654-1659.
39.
Nazim A.R.M. and Ansari M.N.M. (2020): Impact strength and morphological properties of Kenaf / glass fibre / polyester hybrid composite for attenuator application.– Materials Today: Proceedings, vol.29, pp.119-122.
40.
Sravya S. (2015): Evaluating the mechanical properties of hybried composites (Kenaf, e-glass, jute).– International Journal of Latest Trends in Engineering and Technology, vol.5, No.1, pp.164-170.
41.
José L. and Hallak T. (2012): Hybrid polymeric composites reinforced with sisal fibres and silica microparticles.– Composites : Part B, vol.43, No.8, pp.3436-3444.
42.
Ribeiro Filho S.L.M. and Oliveira P.R. (2018): Hybrid bio-composites reinforced with sisal-glass fibres and Portland cement particles: A statistical approach.– Composites Part B: Engineering, vol.149, pp.58-65.
43.
Ramesh M. and Palanikumar K. (2013): Mechanical property evaluation of sisal-jute-glass fiber reinforced polyester composites.– Composites Part B: Engineering, vol.48, pp.1-9.
44.
Kalaprasad G. and Joseph K. (1997): Influence of short glass fiber addition on the mechanical properties of sisal reinforced low density polyethylene composites.– Journal of Composite Materials, vol.31, No.5, pp.509-527.
45.
De Rosa I.M. and Santulli C. (2009): Post-impact damage characterization of hybrid configurations of jute / glass polyester laminates using acoustic emission and IR thermography.– Composites Science and Technology, vol.69, No.7-8, pp.1142-1150.
46.
Sanjay M.R. and Yogesha B. (2016): Studies on Mechanical Properties of Jute / E-Glass Fiber Reinforced Epoxy Hybrid Composites.– Journal of Minerals and Materials Characterization and Engineering, vol.4, No.1, pp.15-25.
47.
Ouarhim W. and Essabir H. (2020) Hybrid composites and intra-ply hybrid composites based on jute and glass fibers: A comparative study on moisture absorption and mechanical properties.– Materials Today Communications, vol.22, pp.100861.
48.
Ouarhim W. and Essabir H. (2018): Structural laminated hybrid composites based on raffia and glass fibers: Effect of alkali treatment, mechanical and thermal properties.– Composites Part B: Engineering, vol.154, pp.128-137.
49.
Taurino R. and De Bortoli L.S. (2020): Development of glass-stalks-unsaturated polyester hybrid composites.– Composites Communications, vol.22, pp.100428.
50.
Tripathy C. and Deo C.R. (2021): Performance studies of polyester-based hybrid composites reinforced with palmyra-palm leaf stalk and glass fibers.– Materials Today : Proceedings, vol.38, pp.2671-2674.
51.
Venkata Deepthi P. and Sita Rama Raju K. (2019): Dynamic mechanical analysis of banana, pineapple leaf and glass fibre reinforced hybrid polyester composites.– Materials Today: Proceedings, vol.18, pp.2114-2117.
52.
Ashik K.P. and Sharma R.S. (2018): Investigation of moisture absorption and mechanical properties of natural /glass fiber reinforced polymer hybrid composites, – Materials Today: Proceedings, vol.5, pp.3000-3007.
53.
Ayer J. and Lama K. (2013): Mechanical Properties of Sugar Palm Polyester Composites.– Chinese Journal of Polymer Science, vol.31, No.10, pp.1394-1403.
54.
Kuram E. (2019): Hybridization effect of talc/glass fiber as a filler in polycarbonate/acrylonitrile-butadiene-styrene composites.– Composites Part B: Engineering; vol.173, pp. 106954.
55.
Ahmadi R. and Ghanbarzadeh B. (2019): The antimicrobial bio-nanocomposite containing non-hydrolyzed cellulose nanofiber (CNF) and Miswak (Salvadora persica L.) extract.– Carbohydrate Polymers, vol.214, pp.15-25.
56.
Kahl C. and Feldmann M. (2018): Advanced short fiber composites with hybrid reinforcement and selective fiber-matrix-adhesion based on polypropylene – Characterization of mechanical properties and fiber orientation using high-resolution X-ray tomography.– Composites Part A: Applied Science and Manufacturing, vol.11. pp.54-61.
57.
Morán J.I. and Alvarez V.A. (2008): Extraction of cellulose and preparation of nanocellulose from sisal fibers, Cellulose, vol.15, pp.149-159.
58.
Azanaw A. and Haile A. (2018): Extraction and characterization of natural cellulosic fibers from Carissa edulise plant stems.– International Research Journal of Advanced Engineering and Science, vol.3, pp.49 52.
59.
Belouadah Z. and Ati A. (2014): Optimization of extraction methods and mechanical characterization of alfa fiber for its application as material reinforcement composites (in French).– Journal of Materials, Processes and Environment, vol.2, No.1, pp.1 6.
60.
ASTM D792 07 (2007): Standard Test Methods for Density and Specific Gravity ( Relative Density ) of Plastics.– ASTM International, vol.15, pp.1 5.
61.
D0638-14.1 (2015): Standard Test Method for Tensile Properties of Plastics.– ASTM International, DOI: 10.1520/D0638-14.
62.
D6110-10.1.(2010): Standard Test Method for Determining the Charpy Impact Resistance of Notched Specimens of Plastics.– ASTM International, DOI: 10.1520/D6110-10.1.
63.
ASTM D570 (2014): Standard Test Method for Water Absorption of Plastics.– ASTM International, vol.98, pp.25 28.