ORIGINAL PAPER
MHD Flow Of Walters’ Liquid B Over A Nonlinearly Stretching Sheet
 
More details
Hide details
1
Department of Mathematics, Bangalore University, Central College Campus, Bangalore – 560 001, INDIA
 
2
Department of Mathematics, Government First Grade College for Women, Hassan 573 201, INDIA
 
3
University of Nottingham (Malaysia Campus) Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, MALAYSIA
 
 
Online publication date: 2015-09-19
 
 
Publication date: 2015-08-01
 
 
International Journal of Applied Mechanics and Engineering 2015;20(3):589-603
 
KEYWORDS
ABSTRACT
The paper discusses the boundary layer flow of a weak electrically conducting viscoelastic Walters’ liquid B over a nonlinearly stretching sheet subjected to an applied transverse magnetic field, when the liquid far away from the surface is at rest. The stretching is assumed to be a quadratic function of the coordinate along the direction of stretching. An analytical expression is obtained for the stream function and velocity components as a function of the viscoelastic parameter, the Chandrasekhar number and stretching related parameters. The results have possible technological applications in liquid based systems involving stretchable materials.
REFERENCES (10)
1.
Andersson H.I. (1992): MHD flow of a viscoelastic fluid past a stretching surface. – Acta Mech., vol.95, pp.227-230.
 
2.
Beard D.W. and Walters K. (1964): Elastico-viscous boundary-layer flows. - I. Two-dimensional flow near a stagnation point. – Proc. Camb. Phil. Soc., vol.60, pp.667-674.
 
3.
Crane L.J. (1970): Flow past a stretching plate. – Z. Angew. Math. Phys., vol.21, pp.645-647.
 
4.
Dandapat B.S., Singh S.N. and Singh R.P. (2004): Heat transfer due to permeable stretching wall in presence of transverse magnetic field. – Arch. Mech., vol.56, No.2, pp.127-141.
 
5.
Pavlov K.B. (1974): Magnetohydrodynamic flow of an incompressible viscous liquid caused by deformation of plane surface. – Magnetnaya Gidrodinamica, vol.4, pp.146-147.
 
6.
Rajagopal K.R., Na T.Y. and Gupta A.S. (1987): Flow of a viscoelastic fluid over a stretching sheet. – Rheo. Acta, vol.23, pp.213-215.
 
7.
Sakiadis B.C. (1961b): Boundary-layer behavior on continuous solid surfaces, II. The boundary layer on a continuous flat surface. – A.I.Ch.E. J., vol.7, pp.221-225.
 
8.
Siddheshwar P.G. and Mahabaleshwar U.S. (2005): Effects of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet. – Int. J. Nonlinear Mech., vol.40, pp.807-820.
 
9.
Takhar H.S., Ali M.A. and Gupta A.S. (1989): Stability of magnetohydrodynamic flow over a stretching sheet. – In: Liquid metal hydrodynamics (Lielpeteris, J., Moreau, R., eds.), pp.465-471, Dordrecht: Kluwer.
 
10.
Vleggaar J. (1977): Laminar boundary-layer behaviour on continuous accelerating surfaces. – Chem. Eng. Sci., vol.32, No.12, pp.1517-1525.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top