ORIGINAL PAPER
Magnetic effects on surface waves in a rotating non-homogeneous half-space with grooved and impedance boundary characteristics
 
More details
Hide details
1
GST- Mathematics Division, Veritas University Abuja, Nigeria
 
2
Department of Mechanical Engineering,, University of Colorado Denver, USA, United States
 
3
Department of Mathematics, Faculty of Science,, COMSATS University Islamabad, Park Road Chak Shahzad, 44000 Islamabad, Pakistan, Pakistan
 
 
Submission date: 2023-07-22
 
 
Final revision date: 2023-08-24
 
 
Acceptance date: 2023-09-20
 
 
Online publication date: 2023-12-19
 
 
Publication date: 2023-12-23
 
 
Corresponding author
Augustine Igwebuike Anya   

GST- Mathematics Division, Veritas University Abuja, 901101, Abuja, Nigeria
 
 
International Journal of Applied Mechanics and Engineering 2023;28(4):26-42
 
KEYWORDS
TOPICS
ABSTRACT
Investigation on the Mathematical modeling of waves in a rotating grooved and impedance boundary of a non-homogeneous fibre-reinforced solid half‐space under the influence of magnetic field and mechanical force is envisaged. We derived analytically, the dynamical equations for the rotating grooved and impedance boundary of the non-homogeneous fibre-reinforced solid under the influence of magnetic fields and mechanical force. Harmonic solution method of wave analysis is utilized. This is such that the component of displacements and stresses are developed and studied after employing dimensionless parameters in the equations of motion. Numerical computations are presented in graphical form by using Mathematica Software for a particular chosen material. We observed that the combined grooved, magnetic fields, impedance boundary etc. physical parameters, have remarkable effects on the material. A decrease in horizontal impedance yielded maximum amplitudes of displacements and stresses of the waves on the fibre-reinforced medium. The mechanical force and rotation of the medium induced increased behaviors to the amplitudes of displacement and stress components of the wave on the solid medium. Thus, this work should be of great importance in studies involving seismology and seismic Mechatronics solution for stress-wave generation in non-homogeneous materials.
REFERENCES (31)
1.
Spencer A.J.M. (1972): Deformations of Fibre-reinforced Materials.– Oxford Uni. Pres. Lond.
 
2.
Abd-Alla A.M., Abo-Dahab, S.M. and Khan A. (2017): Rotational effects on magneto- thermoelastic stonely, Love, and Rayleigh waves in fibre-reinforced anisotropic general viscoelastic media of higher order.– CMC, vol.53, pp.49-72, https://doi.org/10.3970/cmc.20....
 
3.
Schoenberg M. and Censor D. (1973): Elastic waves in rotating media.– Quart. Appl. Math., vol.31, pp.115-125. DOI: 10.4236/am.2015.65075.
 
4.
Asano S. (1966): Reflection and refraction of elastic waves at a corrugated interface.– Bull. Seism. Soc. Am., vol.56, pp.201‐221.
 
5.
Khan A., Anya A.I. and Kaneez H. (2015): Gravitational effects on surface waves in non-homogeneous rotating fibre-reinforced anisotropic elastic media with voids.– Int. J. Appl. Sci. Eng. Res.,vol.4, pp.620-632.
 
6.
Singh B. (2016): Reflection of elastic waves from plane surface of a half-space with impedance boundary conditions.– Geosci. Res., vol.2, pp.242-253.
 
7.
Ailawalia P., Sachdeva S.K. and Pathania D. (2015): A two dimensional fibre reinforced micropolar thermoelastic problem for a half-space subjected to mechanical force.– Theor. Appl. Mech., vol.42, pp.11-25, DOI:10.2298/TAM1501011A.
 
8.
Munish S., Sharma A. and Sharma A. (2016): Propagation of SH waves in a double non‐homogeneous crustal layers of finite depth lying over an homogeneous half‐space.– Lat. Am. J. Solids Struct., vol.13, pp.2628‐2642. https://doi.org/10.1590/1679-7....
 
9.
Singh S.S. and Tomar S.K. (2008): qP‐wave at a corrugated interface between two dissimilar pre-stressed elastic half-spaces.– J. Sound Vib., vol.317, No.3, pp.687‐708.
 
10.
Singh A.K., Das A., Kumar S. and Chattopadhyay A. (2015): Influence of corrugated boundary surfaces reinforcement, hydrostatic stress, heterogeneity and anisotropy on Love type wave propagation.– Meccanica, vol.50, pp.2977‐2994, doi:10.1007/s11012-015-0172-6.
 
11.
Singh A.K., Mistri K.C. and Mukesh P.K. (2018): Effect of loose bonding and corrugated boundary surface on propagation of Rayleigh‐type wave.– Lat. Am. J. Solids Struct., vol.15, doi.org/10.1590/1679-78253577.
 
12.
Das S.C., Acharya D.P. and Sengupta D. R. (1992): Surface waves in an inhomogeneous elastic medium under the influence of gravity.– Rev. Roumaine Sci. Tech. Ser Mec. Appl., vol.37, pp.539-551.
 
13.
Abd-Alla A.M., Abo-Dahab S.M. and Alotaibi Hind A. (2016): Effect of the rotation on a non-homogeneous infinite elastic cylinder of orthotropic material with magnetic field.– J. Comput. Theor. Nanosci., vol.13, pp.4476-4492, doi:10.1166/jctn.2016.5308.
 
14.
Chattopadhyay A. (1975): On the dispersion equation for Love wave due to irregularity in the thickness of non-homogeneous crustal layer.– Acta Geol. Pol., vol.23, pp.307-317.
 
15.
Sunita D., Suresh K.S. and Kapil K.K. (2019): Reflection at the free surface of fibre-reinforced thermoelastic rotating medium with two temperature and phase-lag.– Appl. Math. Model. vol.65, pp.106-119, https://doi.org/10.1016/j.apm.....
 
16.
Roy I., Acharya D.P. and Acharya S. (2017): Propagation and reflection of plane waves in a rotating magneto-elastic fibre-reinforced semi space with surface stress.– Mech. & Mech. Eng., vol.21, pp.1043-1061, DOI:10.2478/mme-2018-0074.
 
17.
Singh D. and Sindhu R. (2011): Propagation of waves at interface between a liquid half- space and an orthotropic micropolar solid half-space.– Adv. Acoust. & Vib., vol.2011, p.5, DOI:10.1155/2011/159437.
 
18.
Gupta R.R. (2014): Surface wave characteristics in a micropolar transversely isotropic half-space underlying an inviscid liquid layer.– Int. J. of Appl. Mech. Eng., vol.19, pp.49-60.
 
19.
Gupta R.R. (2014): Reflection of waves in a rotating transversely isotropic thermoelastic half-space under initial stress.– J. of Solid Mech., vol.6, No.2, pp.229-239.
 
20.
Anya A.I., Akhtar M.W., Abo-Dahab M.S., Kaneez H., Khan A. and Adnan J. (2018): Effects of a magnetic field and initial stress on reflection of SV-waves at a free surface with voids under gravity.– J. Mech. Behav. Mater., vol.27, pp.56, https://doi.org/10.1515/jmbm-2....
 
21.
Anya A.I. and Khan A. (2019): Reflection and propagation of plane waves at free surfaces of a rotating micropolar fibre-reinforced medium with voids.– Geomech. & Eng., vol.18, pp.605-614.
 
22.
Anya A.I. and Khan A. (2020): Reflection and propagation of magneto-thermoelastic plane waves at free surfaces of a rotating micropolar fibre-reinforced medium under G-L theory.– Int. J. of Acoust. and Vib., vol.25, pp.190-199, https://doi.org/10.20855/ijav.....
 
23.
Anya A.I. and Khan A. (2022): Plane waves in a micropolar fibre-reinforced solid and liquid interface for non-insulated boundary under magneto-thermo-elasticity.– J. Comput. Appl. Mech., vol. 53, pp.204-218, doi:10.22059/jcamech.2022.341656.712.
 
24.
Maleki F. and Jafarzadeh F. (2023): Model tests on determining the effect of various geometrical aspects on horizontal impedance function of surface footings.– Scientia Iranica, in press, doi:10.24200/SCI.2023.59744.6403.
 
25.
Chowdhury S., Kundu S., Alam P. and Gupta Sh.(2021): Dispersion of Stoneley waves through the irregular common interface of two hydrostatic stressed MTI medi.– Scientia Iranica, vol.28, pp.837-846, doi:10.24200/SCI.2020.52653.2820.
 
26.
Singh B. and Kaur B.(2022): Rayleigh surface wave at an impedance boundary of an incompressible micropolar solid half-spac.– Mech. Adv. Mater. Struct., vol.29, No.25, pp.3942-3949 .
 
27.
Singh B. and Kaur B. (2020): Rayleigh-type surface wave on a rotating orthotropic elastic half-space with impedance boundary conditions.– J. Vib. Control., vol.26, pp.1980-1987.
 
28.
Sahu S.A., Mondal S. and Nirwal S. (2022): Mathematical analysis of Rayleigh waves at the nonplanner boundary between orthotropic and micropolar media.– Int. J. Geomech., vol.23, doi.org/10.1061/IJGNAI.GMENG-7246.
 
29.
Giovannini L.(2022): Theory of dipole-exchange spin-wave propagation in periodically corrugated films.– Phys. Rev. B, vol.105, doi.org/10.1103/PhysRevB.105.214426.
 
30.
Rakshit S., Mistri K.C., Das A. and Lakshman A. (2022): Effect of interfacial imperfections on SH-wave propagation in a porous piezoelectric composit.– Mech. Adv. Mater. Struct., vol.29, pp.4008-4018. doi.org/10.1080/15376494.2021.1916138.
 
31.
Rakshit S., Mistri K.C., Das A. and Lakshman A. (2021) Stress analysis on the irregular surface of visco-porous piezoelectric half-space subjected to a moving load.– J. Intell. Mater. Syst. Struct. vol.33, https://doi.org/10.1177/104538....
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top