ORIGINAL PAPER
Magneto-thermo-piezo-elastic wave in an initially stressed rotating monoclinic crystal in a two-temperature theory
More details
Hide details
1
Shishu Niketan Model Senior Secondary School, Sector 22-D, Chandigarh
Online publication date: 2023-09-29
Publication date: 2023-09-29
International Journal of Applied Mechanics and Engineering 2023;28(3):127-158
KEYWORDS
ABSTRACT
This research problem is an investigation of wave propagation in a rotating initially stressed monoclinic piezoelectric thermo-elastic medium under with the effect of a magnetic field.
A two-temperature generalized theory of thermo-elasticity in the context of Lord-Shulman’s theory is applied to study the waves under the magnetic field.
The governing equations of a rotating initially stressed monoclinic piezoelectric thermo-elastic medium with a magnetic field are formulated. This research problem is solved analytically, for a two-dimensional model of the piezo-electric monoclinic solid, and concluded that there must be four piezo-thermoelastic waves, three coupled quasi waves (qP (quasi-P), qT (quasi-thermal), and qSV (quasi-SV)) and one piezoelectric potential (PE) wave propagating at different speeds. It is found that at least one of these waves is evanescent (an evanescent wave is a non-propagating wave that exists) and that there are therefore no more than three bulk waves.
The speeds of different waves are calculated and the influence of the piezoelectric effect, two-temperature parameter, frequency, rotation, and magnetic field on phase velocity, attenuation coefficient, and specific loss is shown graphically.
This model may be used in various fields, e.g. wireless communications, signal processing, and military defense equipment are all pertinent to this study.
ACKNOWLEDGEMENTS
I am thankful to Lorentz Centre, Leiden University, Leiden, Netherlands for providing me with office space and a research environment that served as an inspiration for this research work during the Workshop on Coherent Structures: Current Developments and Future Challenges from July 4-8, 2022, Lorentz Centre at Oort in Leiden, Leiden University, Leiden, The Netherlands.
REFERENCES (54)
1.
Lord H.W. and Shulman Y. (1967): A generalized dynamical theory of thermo-elasticity.– J. Mech. Phys. Solid, vol.15, pp.209-309.
2.
Dhaliwal R.S. and Sherief H.H. (1980): Generalized thermos-elasticity for anisotropic media.– Quart. Appl. Math., vol.33, pp.1-8.
3.
Youssef H.M. (2006): Theory of two-temperature generalized thermoelasticity.– IMA Journal of Applied Mathematics, vol.71, No.3, pp.383-390.
4.
Youssef H.M. (2006): Theory of two-temperature thermoelasticity without energy dissipation. journal of thermal stresses.– vol.34, No.2, pp.38-146.
5.
Ignaczak J. and Ostoja-Starzewski M. (2009): Thermoelasticity with Finite Wave Speeds. Oxford University Press.
6.
Hetnarski R.B. and Ignaczak J. (1999): Generalized thermoelasticity.– Journal of Thermal Stresses, vol.22, pp.451-476.
7.
Chandrasekharaih D.S. (1986): Thermoelasticity with second sound: a review.– Appl. Mech. Rev., vol.39, No.3, pp.355-376.
8.
Chandrasekharaih D.S. (1998): Hyperbolic thermoelasticity: a review of recent literature.– Appl Mech Rev., vol.51, No.12, pp.705-729.
9.
Chen P.J. and Gurtin M.E. (1968): On a theory of heat conduction involving two temperatures.– Zeitschrift für Angewandte Mathematik und Physik, vol.19, pp.614-627.
10.
Chen P.J., Gurtin M.E. and Williams W.O. (1969): On the thermodynamics of non-simple elastic material with two temperatures.– Zeitschrift fur angewandte Mathematik und Physik, vol.20, pp.107-112.
11.
Mindlin R.D. (1961): On the equations of motion of piezoelectric crystals.– Problems of Continuum Mechanics, N.I. Muskelishvili’s Birthday 70, SIAM, Philadelphia, pp.282-290.
12.
Nowacki W. (1978): Some general theorems of thermo-piezoelectricity. Journal of Thermal Stresses, vol.1, pp.171-182.
13.
Nowacki W. (1979): Foundations of Linear Piezoelectricity.– Parkus H (Ed.), Electromagnetic Interactions in Elastic Solids, Springer, Wien, Chapter 1.
14.
Nowacki W. (1983): Mathematical models of phenomenological piezoelectricity. New problems in mechanics of continua.– University of Waterloo Press, Ontario, pp.29-49.
15.
Chandrasekharaiah D.S. (1984): A temperature rate dependent theory of piezoelectricity.– Journal of Thermal Stresses, vol.7, pp.293-306.
16.
Chandrasekharaiah D.S. (1988): A generalized linear thermoelasticity theory of piezoelectric media. Acta Mechanica, vol.71, pp.39-49.
17.
Every A.G. and Neiman VI (1992): Reflection of electroacoustic waves in piezoelectric solids: Mode conversion into four bulk waves.– J. Appl. Phys., vol.71, pp.6018, doi: 10.1063/1.350457.
18.
Othman M.I.A. and Ahmed E.A.A. (2019): Exact analytical solution of a homogeneous anisotropic piezo- thermoelasic half-space of a hexagonal type under different fields with three theories.– Microsystem Technologies, vol.25, pp.1423-1435.
19.
Vashishth A.K. and Sukhija H. (2015): Reflection and transmission of plane waves from fluid- piezothermo- elastic solid interface.– Applied Mathematics and Mechanics, vol.36, pp.11-36.
20.
Singh B. (2010): Wave propagation in a prestressed piezoelectric half-space. Acta Mechanica, vol.211, No.3-4, pp.337-344.
21.
Jain K., Kumar S. and Deswal S. (2020): Analysis of reflection phenomena in a fiber reinforced piezo-thermoelastic half space with diffusion and two-temperature.– Journal of Solid Mechanics, vol.12, No.4, pp.912-934, DOI: 10.22034/jsm.2020.1897751.1579.
22.
Othman M.I.A., Elmaklizi Y.D. and Ahmed E.A.A. (2017): Influence of magnetic field on generalized piezo-thermoelastic rotating medium with two relaxation times.– Microsyst. Technol., vol.23, pp.5599-5612, DOI 10.1007/s00542-017-3513-7.
23.
Guha S., Singh A.K. and Das A. (2019): Analysis on different types of imperfect interfaces between two dissimilar piezothermoelastic half-spaces on reflection and refraction phenomenon of plane waves.– Waves in Random and Complex Media,
https://doi.org/ 10.1080/ 17455030.2019.1610198.
24.
Kumar P. and Harsha S.P. (2022): Dynamic analysis of porosity dependent functionally graded sigmoid piezoelectric (FGSP) plate.– Structures, vol.46, pp.1737-1752.
25.
Abdulaziz Alenazi, Abdelaala Ahmed, El-Bary A.A., Tantawi R.S. and Khaled Lotfy (2023): Moisture photo-thermoelasticity diffusivity in semiconductor materials: a novel stochastic model, Crystals, vol.13, pp.42,
https://doi.org/10.3390/cryst1....
26.
Deswal S., Sheokand S.K. and Kalkal K.K. (2019): Reflection at the free surface of fiber-reinforced thermoelastic rotating medium with two-temperature and phase-lag.– Applied Mathematical Modelling, vol.65, pp.106-119.
27.
Lotfy Kh., Elidy E.S. and Tantawi R.S. (2021): Piezo-photo-thermoelasticity transport process for hyperbolic two-temperature theory of semiconductor material.– International Journal of Modern Physics C, vol.32, No.7, pp.2150088.
28.
Ye Z.G. (2008): Handbook of Dielectric, Piezoelectric and Ferroelectric Materials Synthesis, Properties and Applications.– Woodhead Publishing Limited, CRC Press, New York.
29.
Keith C.M. and Crampin S. (1977): Seismic body waves in anisotropic media: Reflection and refraction at a plane interface.– Geophys. J.R. Astr. Soc., vol.49, pp.181-208.
30.
Singh S.S. and Tomar S.K. (2007): Quasi-P waves at a corrugated interface between two dissimilar monoclinic elastic half-space.– Int. J. Solids Struct., vol.44, pp.197-228.
31.
Singh B. and Yadav A.K. (2012): Plane waves in a transversely isotropic rotating magneto-thermo-elastic medium.– J. Eng. Phys. Thermophys., vol.8, pp.1226-1232.
32.
Singh B. and Yadav A.K. (2012): Reflection of plane waves in a rotating transversely isotropic magneto-thermoelastic solid half-space.– Theor. Appl. Mech., Sofia, vol.42, pp.33-60.
33.
Chattopadhyay A. and Choudhary S. (1995): The reflection phenomena of P- waves in a medium of monoclinic type.– Int. J. Eng. Sci., vol.33, pp.199-207.
34.
Chattopadhyay A., Saha S. and Chakraboty M. (1996): The reflection of SV-waves in a monoclinic medium.– Indian. J. pure Appl. Math., vol.27, pp.1029-1042.
35.
Singh S.J. and Khurana S. (2002): Reflection of P and SV wave at the free surface of a monoclinic elastic half-space. Proceedings of Indian Academy of Science, (Earth Planet Science), vol.111, pp.401-412.
36.
Sahar S., Chattopadhyay A. and Banerjee D. (2001): Reflection and refraction of quasi-p wave due to a sandwich isotropic layer between two monoclinic half-spaces (March 26, 2001).– International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. Paper 21.
http://scholarsmine.mst.edu/ic....
37.
Montanaro A. (2015): On the propagation of plane waves in piezo-electromagnetic monoclinic crystals.– Arch. Mech., Warsaw, vol.67, No.3, pp.116.
38.
Gupta V. and Vashishth A.K.: Effect of piezoelectricity on the bulk waves in monoclinic poro-elastic material.– Journal of Theoretical and Applied Mechanics, Warsaw, vol.54, No.2, pp.571-577. DOI: 10.15632/jtam-pl.54.2.571.
39.
Singh B. and Yadav A.K. (2013): Reflection of plane waves in an initially stressed perfectly conducting transversely isotropic solid half-space.– J. Earth Syst. Sci., vol.122. No.4, pp.1045-1053.
40.
Singh B. and Yadav A.K. (2016): Plane waves in a rotating monoclinic magneto-thermoelastic medium.– Journal of Engineering Physics and Thermophysics, vol.89. No.2, pp.428-440.
41.
Yadav A.K. (2021): Reflection of plane waves from the free surface of a rotating orthotropic magneto-thermoelastic solid half-space with diffusion.– Journal of Thermal Stresses, vol.44, No.1, pp.86-106, DOI: 10.1080/01495739.2020.1842273.
42.
Yadav A.K. (2021): Reflection of plane waves in a fraction-order generalized magneto-thermo-elasticity in a rotating triclinic solid half-space.– Mechanics of Advanced Materials and Structures, vol.29, No.18, pp.1-18 DOI: 10.1080/15376494.2021.1926017.
43.
Montanaro A. (1999): On singular surfaces in isotropic linear thermoelasticity with initial stress.– Journal of the Acoustical Society of America, vol.106, No.3, pp.1586-1588.
44.
Marin M. and Marinescu C. (1998): Thermoelasticity of initially stressed bodies, asymptotic equipartition of energies.– International Journal of Engineering Science, vol.36, No.1, pp.73-86.
45.
Biot M.A. (1965): Mechanics of Incremental Deformations.– New York: Wiley.
46.
Yadav A.K. (2021): Effect of impedance boundary on the reflection of plane waves in fraction-order thermoelasticity in an initially stressed rotating half-space with a magnetic field.– Int. J. Thermophys., vol.42, pp.3.
https://doi.org/10.1007/s10765....
47.
Yadav A.K. (2021): Thermoelastic waves in a fractional-order initially stressed micropolar diffusive porous medium.– Journal of Ocean Engineering and Science, vol.6, pp.376-388, doi:
https://doi.org/10.1016/j.joes....
48.
Maity N., Barik S.P. and Chaudhuri P.K. (2013): Reflection of plane waves in elastic half space with void pores under the action of uniform magnetic field.– International Journal of Engineering Science, vol.71, pp.62-73.
49.
Schoenberg M. and Censor D. (1973): Elastic waves in rotating media.– Quart. Appl. Math., vol.31, pp.115-125.
50.
Willson A.J. (1963): The propagation of magneto-thermoelastic plane waves.– Proc. Camb. Phil. Soc., vol.59, pp.483-488.
51.
Alzahrani F., Hobiny A., Abbas I. and Marin M. (2020): An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities.– Symmetry, vol.12, No.5, Art. No.848, p.15, doi:10.3390/sym12050848.
52.
Abo-Dahab S.M., Abouelregal A.E. and Marin M. (2020): Generalized thermoelastic functionally graded on a thin slim strip non-gaussian laser beam.– Symmetry, vol.12, No.7, Art. No.1094, DOI:10.3390/sym12071094.
53.
Carrera E., Pagani A. and Augello R. (2022): Large deflection of composite beams by finite elements with node-dependent kinematics.– Computational Mechanics, vol.69, No.6, pp.1481-1500.
54.
Yadav A.K., Barak M.S. and Gupta V. (2023), "Reflection at the free surface of the orthotropic piezo-hygro-thermo-elastic medium", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 33 No. 10, pp. 3535-3560.
https://doi.org/10.1108/HFF-04....