ORIGINAL PAPER
Mechanical Parameters of the Squeeze Film Curvilinear Bearing Lubricated with a Prandtl Fluid
,
 
 
 
 
More details
Hide details
1
University of Zielona Góra, Faculty of Mechanical Engineering, ul. Szafrana 4, 65-516 Zielona Góra, Poland
 
 
Online publication date: 2016-12-08
 
 
Publication date: 2016-12-01
 
 
International Journal of Applied Mechanics and Engineering 2016;21(4):967-977
 
KEYWORDS
ABSTRACT
Based upon a Prandtl fluid flow model, a curvilinear squeeze film bearing is considered. The equations of motion are given in a specific coordinate system. After general considerations on the Prandtl fluid flow these equations are used to derive the Reynolds equation. The solution of this equation is obtained by a method of successive approximation. As a result one obtains formulae expressing the pressure distribution and load-carrying capacity. The numerical examples of the Prandtl fluid flow in gaps of two simple bearings are presented.
REFERENCES (16)
1.
Walicka A. (2002a): Rheodynamics of Non-Newtonian Fluids Flow in Straight and Curved Channels (in Polish). – Zielona Gora: University Press.
 
2.
Walicka A. (2002b): Rotational Flows of Rheological Complex Media in Narrow Annular Channels (in Russian). – Zielona Góra: University Press.
 
3.
Walicki E. (2005): Rheodynamics of Slide Bearings Lubrication (in Polish). – Zielona Gora: University Press.
 
4.
Bird R.B., Stewart W.E. and Lightfoot F.W. (1960): Transport Phenomena. – New York: John Wiley.
 
5.
Wilkinson W.L. (1960): Non-Newtonian Fluid. – New York: Pergamon.
 
6.
Metzner A.B. (1965): Heat transfer in non-Newtonian fluids. – Adv. Heat Transfer, vol.2, pp.357-397.
 
7.
Skelland A.H.P. (1967): Non-Newtonian Flow and Heat Transfer. – New York: John Wiley.
 
8.
Walicka A. (1994): Micropolar Flow in a Slot Between Rotating Surfaces of Revolution. – Zielona Góra: TU Press.
 
9.
Lipscomb C.C. and Denn M.M. (1984): Flow of Bingham fluids in complex geometries. – J. Non-Newt. Fluid Mech., vol.14, No.3, pp.337-349.
 
10.
Dorier C. and Tichy J. (1992): Behaviour of a Bingham-like viscous fluid in lubrication flows. – J. Non-Newt. Fluid Mech., vol.45, No.3, pp.291-350.
 
11.
Wada S. and Hayashi H. (1971a): Hydrodynamic lubrication of journal bearings by pseudo-plastic lubricants, – (Pt 1, Theoretical studies). – Bull. JSME, vol.14, No.69, pp.268-278.
 
12.
Wada S. and Hayashi H. (1971b): Hydrodynamic lubrication of journal bearings by pseudo-plastic lubricants. (Pt 2, Experimental studies). – Bull. JSME, vol.14, No.69, pp.279-286.
 
13.
Swamy S.T.N., Prabhu B.S. and Rao B.V.A. (1975): Stiffness and damping characteristics of finite width journal bearing with a non-Newtonian film and their application to instability prediction. – Wear, vol.32, pp.379-390.
 
14.
Rajalingham C., Rao B.V.A. and Prabu S. (1978): The effect of a non-Newtonian lubricant on piston ring lubrication. – Wear, vol.50, pp.47-57.
 
15.
Khonsari M.M. and Dai F. (1992): On the mixture flow problem in lubrication of hydrodynamic bearing: small solid volume fraction. – STLE Trib. Trans., vol.35, No.1, pp.45-52.
 
16.
Prandtl L. (1928): Ein Gedankenmodell zur kinetischen Theorie der festen Körper. – ZAMM, vol.8, No.2, pp.85-107.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top