ORIGINAL PAPER
Micropolar Flow Over a Black Isothermal Plate in the Presence Thermal Radiation
 
 
 
More details
Hide details
1
Department of Mathematics, University of Ioannina, Ioannina, 45110, Greece
 
 
Online publication date: 2021-06-22
 
 
Publication date: 2021-06-01
 
 
International Journal of Applied Mechanics and Engineering 2021;26(2):235-241
 
KEYWORDS
ABSTRACT
This study numerically investigates the effects of thermal radiation on the flow over a black isothermal plate for an optically thin gray micropolar fluid. The flowing medium absorbs and emits radiation, but scattering is not included. The computational results are discussed graphically for several selected flow parameters.
REFERENCES (22)
1.
Eringen A.C. (1966): Theory of micropolar fluids.– Journal of Mathematics and Mechanics, pp.1-18.
 
2.
Ariman T., Turk M. and Sylvester N. (1973): Microcontinuum fluid mechanics - a review.– International Journal of Engineering Science, vol.11, No.(8), pp.905-930.
 
3.
Ariman T. (1968): Micropolar and dipolar fluids.– International Journal of Engineering Science, vol.6, No.1, pp.1-8.
 
4.
Ariman T., Turk M. and Sylvester N. (1974): Applications of microcontinuum fluid mechanics.– International Journal of Engineering Science, vol.12, No.4, pp.273-293.
 
5.
Lukaszewicz G. (1999): Micropolar Fluids: Theory and Applications.– Springer Science & Business Media.
 
6.
Chiam T. (1982): Micropolar fluid flow over a stretching sheet.– ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol.62, No.10, pp.565-568.
 
7.
Hassanien I. and Gorla R. (1990): Heat transfer to a micropolar fluid from a non-isothermal stretching sheet with suction and blowing.– Acta Mechanica, vol.84, No.1-4, pp.191-199.
 
8.
Hassanien I. and Gorla R.S.R. (1990): Mixed convection boundary layer flow of a micropolar fluid near a stagnation point on a horizontal cylinder.– International Journal of Engineering Science, vol.28, No.2, pp.153-161.
 
9.
Hassanien I. (1998): Boundary layer flow and heat transfer on a continuous accelerated sheet extruded in an ambient micropolar fluid.– Int. Commun. Heat Mass Transf., vol.25, No.4, pp.571-583.
 
10.
Ishak A. (2010): Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect.– Meccanica, vol.45, No.3, pp.367-373.
 
11.
Rashidi M.M. and Mohimanian Pour S.A. (2010): A novel analytical solution of heat transfer of a micropolar fluid through a porous medium with radiation by DTM-Padé.– Heat Transfer-Asian Research, vol.39, No.8, pp.575-589.
 
12.
Bhattacharyya K., Mukhopadhyay S., Layek G.C. and Pop I. (2012): Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous shrinking sheet.– International Journal of Heat and Mass Transfer, vol.55, No.11-12, pp.2945-2952.
 
13.
Srinivas S., Reddy P.B.A. and Prasad B.S.R.V. (2015): Non-Darcian unsteady flow of a micropolar fluid over a porous stretching sheet with thermal radiation and chemical reaction.– Heat Transfer-Asian Research, vol.44. No.2, pp.172-187.
 
14.
Singh K., and Kumar M. (2016): Effects of thermal radiation on mixed convection flow of a micropolar fluid from an unsteady stretching surface with viscous dissipation and heat generation/absorption. - International Journal of Chemical Engineering, Article ID 8190234.
 
15.
Naveed M., Abbas Z. and Sajid M. (2016): MHD flow of micropolar fluid due to a curved stretching sheet with thermal radiation.– Journal of Applied Fluid Mechanics, vol.9, No.1, pp.131-138.
 
16.
Das K. and Sarkar A. (2016): Effect of melting on an MHD micropolar fluid flow toward a shrinking sheet with thermal radiation.– Journal of Applied Mechanics and Technical Physics, vol.57, No.4, pp.681-689.
 
17.
Arifuzzaman S.M., Mehedi M.F.U., Al-Mamun A., Biswas P., Islam M.K. and Khan M. (2018): Magnetohydrodynamic micropolar fluid flow in presence of nanoparticles through porous plate. A numerical study.– International Journal of Heat and Technology, vol.36, No.3, pp.936-948.
 
18.
Atif S.M., Hussain S. and Sagheer M. (2018): Numerical study of MHD micropolar carreau nanofluid in the presence of induced magnetic field.– AIPA, vol.8, No.3, 035219.
 
19.
Atif S.M., Hussain S. and Sagheer M. (2019): Magnetohydrodynamic stratified bioconvective flow of micropolar nanofluid due to gyrotactic microorganisms.– AIP Advances, vol.9, No2, 025208.
 
20.
Reddy M.G. and Ferdows M. (2020): Species and thermal radiation on micropolar hydromagnetic dusty fluid flow across a paraboloid revolution.– Journal of Thermal Analysis and Calorimetry, pp.1-19, doi.org/10.1007/s10973-020-09254-1.
 
21.
Raptis A. (1998): Flow of a micropolar fluid past a continuously moving plate by the presence of radiation.– International Journal of Heat and Mass Transfer, vol.41, No.18, pp.2865-2866.
 
22.
Howell J.R., Menguc M.P. and Siegel R. (2010): Thermal Radiation Heat Transfer.– CRC Press.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top