ORIGINAL PAPER
Natural Convection in a Hydrodynamically and Thermally Anisotropic Non-Rectangular Porous Cavity: Effect of Internal Heat Generation/Absorption
,
 
,
 
 
 
 
More details
Hide details
1
Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, PC 123, Al Khod, Muscat, Sultanate Of Oman
 
2
Department of Mathematics, School of Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India; Department of Mathematics, Banaras Hindu University, Varanasi, 221005, India
 
3
Department of Mathematics, Banaras Hindu University, Varanasi, 221005, India
 
 
Online publication date: 2018-08-20
 
 
Publication date: 2018-08-01
 
 
International Journal of Applied Mechanics and Engineering 2018;23(3):595-609
 
KEYWORDS
ABSTRACT
Laminar natural convection in a trapezoidal porous vertical cavity has been investigated in this work. It is assumed that the porous enclosure is filled up with a permeable material subject to hydrodynamic and thermal anisotropy, the flow being governed by the Darcy law as applicable to a non-isotropic medium. It is further assumed that (i) there is heating at the left vertical wall and cooling at the right wall of the enclosure and (ii) the flow domain is subject to the presence of heat source or heat sink. The partial differential equations governing the resulting free convection have been solved numerically in the non-dimensional forms. There arises a number of parameters relating to buoyancy, internal heating, cavity aspect ratio and inclination of the upper surface to the horizontal. The influence of these parameters has been illustrated and analyzed through contours of streamlines and isotherms. We have also discussed the role of internal heating as well as anisotropy on the heat transfer characteristics.
REFERENCES (27)
1.
Ni J. and Beckermann C. (1991): Natural convection in a vertical enclosure filled with anisotropic porous media. – J. Heat Transfer, vol.113, pp.1033-1037.
 
2.
Chang W.J. and Liu H.C. (1994): Natural convection in a finite wall rectangular cavity filled with an anisotropic porous medium. – Int. J. Heat Mass Transfer, vol.37, pp.303-312.
 
3.
Kimura S., Masuda Y. and Hayashi T.K. (1993): Natural convection in an anisotropic porous medium heated from the side (effects of anisotropic properties of porous matrix). – Heat Transf. Jpn. Res, vol.22, pp.139-153.
 
4.
Tyvand P.A. and Storesletten L. (1991): Onset of convection in an anisotropic porous medium with oblique principal axes. – J. Fluid Mech, vol.226, pp.371-382.
 
5.
Storesletten L. (1993): Natural convection in a horizontal porous layer with anisotropic thermal diffusivity. – Transp. Porous Media, vol.12, pp.19-29.
 
6.
Degan G., Vasseur P. and Bilgen E. (1995): Convective heat transfer in a vertical anisotropic porous layer. – Int. J. Heat Mass Transfer, vol.38, pp.1975-1987.
 
7.
Degan G. and Vasseur P. (1996): Natural convection in a vertical slot filled with an anisotropic porous medium with oblique principal axes. – Numer. Heat Transfer-Part A, vol.30, pp.397-412.
 
8.
Mamou M., Mahidjida A., Vasseur P. and Robillard L. (1998): Onset of convection in an anisotropic porous medium heated from below by a constant heat flux. – Int. Comm. Heat Mass Transfer, vol.25, pp.799-808.
 
9.
Storesletten L. and Tveitereid M. (1999): Onset of convection in an inclined porous layer with anisotropic permeability. – Appl. Mech. Engng., vol.4, pp.575-587.
 
10.
Mahidjida A., Robillard L., Vasseur P. and Mamou M. (2000): Onset of convection in an anisotropic porous layer of finite lateral extent. – Int. Comm. Heat Mass Transfer, vol.27, pp.333-342.
 
11.
Nithiarasu P., Sujatha K.S., Ravindran K., Sundararajan T. and Seetharamu K.N. (2000): Non-Darcy natural convection in a hydrodynamically and thermally anisotropic porous medium. – Computer Meth. App. Mech. Engng, vol.188, pp.413-430.
 
12.
Malashetty M.S. and Basavaraja D. (2003): The effect of thermal/gravity modulation on the onset of convection in a horizontal anisotropic porous layer. – Int. J. Appl. Mech. Engng., vol.8, pp.425-439.
 
13.
Chandra P. and Satyamurty V.V. (2011): Non-Darcian and anisotropic effects on free convection in a porous enclosure. – Trans. Porous Media, vol.90, pp.301-320.
 
14.
Bhadauria B.S., Srivastava A.K., Sacheti N.C. and Chandran P. (2012): Gravity modulation of thermal instability in a viscoelastic fluid saturated anisotropic porous medium. – Zeit. Naturforschung, vol.67, pp.1-9.
 
15.
Tiwari A.K., Singh A.K., Chandran P. and Sacheti N.C. (2012): Natural convection in a cavity with a sloping upper surface filled with an anisotropic porous material. – Acta Mech., vol.223, pp.95-108.
 
16.
Bhadauria B.S. and Kiran P. (2013): Heat transport in an anisotropic porous medium saturated with variable viscosity liquid under temperature modulation. – Trans. Porous Media, vol.100, pp.279-295.
 
17.
Jha B.K. (2001): Transient free-convective flow in a vertical channel with heat sinks. – Int. J. Appl. Mech. Engng, vol.6, pp.279-286.
 
18.
Degan G., Vasseur P. and Awanou N.C. (2005): Anisotropy effects on non-Darcy natural convection from concentrated heat sources in porous media. – Acta Mech., vol.179, pp.111-124.
 
19.
Jaya Krishna D., Basak T. and Das S.K.: Natural convection in a heat generating hydrodynamically and thermally anisotropic non-Darcy porous medium. – Int. J. Heat Mass Transfer, vol.51, pp.4691-4703.
 
20.
Bhadauria B.S., Kumar A., Kumar J., Sacheti N.C. and Chandran P. (2011): Natural convection in a rotating anisotropic porous layer with internal heat. – Trans. Porous Media, vol.90, pp.687-705.
 
21.
Bhadauria B.S., Hashim I. and Siddheshwar P.G.: Study of heat transport in a porous medium under G-jitter and internal heating effects. – Trans. Porous Media, vol.96, pp.21-37.
 
22.
Vanishree R.K. (2014): Effects of throughflow and internal heat generation on a thermo-convective instability in an anisotropic porous medium. – J. Appl. Fluid Mech., vol.7, pp.581-590.
 
23.
Bhadauria B.S., Singh M.K., Singh A., Singh B.K. and Kiran P. (2016): Stability analysis and internal heating effects on oscillatory convection in a viscoelastic fluid saturated porous medium under gravitation modulations. – Int. J. Appl. Mech. Engng., vol.21, pp.785-803.
 
24.
Moretti G. and Abbett M. (1966): A time-dependent computational method for blunt body flows. – AIAA J, vol.4, pp.2136-2141.
 
25.
Mallinson G. and de Vahl Davis G. (1973): The method of the false transient for the solution of coupled elliptic equations. – J. Comput. Phys., vol.12, pp.435-461.
 
26.
Smith R.E. (1982): Algebraic grid generation. – In: Numerical Grid Generation (J.F. Thompson, Ed.).- Amsterdam: North Holland.
 
27.
Shih T.I., Bailey R.T., Nguyen H.L. and Roelke R.J. (1991): Algebraic grid generation for complex geometries. – Int. J. Num. Meth. Fluids, vol.13, pp.1-31.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top