ORIGINAL PAPER
Natural Frequencies of FG Plates with Two New Distribution of Porosity
 
More details
Hide details
1
Laboratory of Structures and Advanced Materials in Civil Engineering and Public Works University of Djillali Liabès of Sidi Bel Abbes, Faculty of Technology, Department of Civil Engineering and Public Works, Algeria
 
2
Laboratory of Industrial Engineering and Sustainable Development, Department Civil Engineering, Institute of Science & Technology, University of Rélizane, Algeria
 
3
Nile Valley University, Faculty of Engineering and Technology, Department of Mechanical Engineering, Atbara, Sudan
 
 
Online publication date: 2021-06-22
 
 
Publication date: 2021-06-01
 
 
International Journal of Applied Mechanics and Engineering 2021;26(2):128-142
 
KEYWORDS
ABSTRACT
The functionally graded plates (FGP) with two new porosity distributions are examined in this paper. In this work the plate is modeled using the higher-order shear deformation plate principle. The shear correction variables are neglected. To evaluate the equations of motion, the Hamilton method will be used herein. Therefore, the free vibration analysis of FG plate is developed in this work. For porous smart plates with simply-supported sides, natural frequencies are obtained and verified with the established findings in the literature. The impact of the porosity coefficient on the normal frequencies of the plate for various thickness ratios, geometric ratios, and material properties was investigated in a thorough numerical analysis.
REFERENCES (39)
1.
Koizumi M. (1997): FGM activities in Japan.– Compos Part B, vol.28, pp.1-4.
 
2.
Akbaş Ş. D. (2015): Wave propagation of a functionally graded beam in thermal environments.– Steel and Composite Structures, vol.19, No.6, pp.1421-1447.
 
3.
Bennai R., Ait Atmane H. and Tounsi A. (2015): A new higher-order shear and normal deformation theory for functionally graded sandwich beams.– Steel and Composite Structures, vol.19, No.3, pp.521-546.
 
4.
Arefi M. (2015): Elastic solution of a curved beam made of functionally graded materials with different cross sections.– Steel and Composite Structures, vol.18, No.3, pp.659-672.
 
5.
Ait Atmane H., Tounsi A., Bernard F. and Mahmoud S.R. (2015): A computational shear displacement model for vibrational analysis of functionally graded beams with porosities.– Steel and Composite Structures, vol.19, No.2, pp.369-384.
 
6.
Ebrahimi F. and Dashti S. (2015): Free vibration analysis of a rotating non-uniform functionally graded beam.– Steel and Composite Structures, vol.19, No.5, pp.1279-1298.
 
7.
Ebrahimi F. and Habibi S. (2016): Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate.– Steel and Composite Structures, vol.20, No.1, pp.205-225.
 
8.
Darılmaz K. (2015): Vibration analysis of functionally graded material (FGM) grid systems.– Steel and Composite Structures, vol.18, No.2, pp.399-408.
 
9.
Kar V.R. and Panda S.K. (2016): Nonlinear thermomechanical deformation behaviour of P-FGM shallow spherical shell panel.– Chinese Journal of Aeronautics, vol.29, No.1, pp.173-183.
 
10.
Hadj Mostefa A., Merdaci S. and Mahmoudi N. (2018): An overview of functionally graded materials «FGM».– Proceedings of the Third International Symposium on Materials and Sustainable Development, ISBN 978-3-319-89706-6, pp.267-278.
 
11.
Trinh T.H., Nguyen D.K. and Gan B.S., Alexandrov S. (2016): Post-buckling responses of elastoplastic FGM beams on nonlinear elastic foundation.– Structural Engineering and Mechanics, vol.58, No.3, pp.515-532.
 
12.
Vel S.S. and Batra R.C. (2004): Three-dimensional exact solution for the vibration of functionally graded rectangular plates.– J Sound Vib., vol.272, pp.703-730.
 
13.
Ferreira A.J.M., Batra R.C., Roque C.M.C., Qian L.F. and Jorge R.M.N. (2006): Natural frequencies of functionally graded plates by a meshless method.– Composite Structures, vol.75, pp.593-600.
 
14.
Qian L.F., Batra R.C. and Chen L.M. (2004): Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov–Galerkin method.– Composites: Part B, vol.35, pp.685-97.
 
15.
Jha D.K., Kant T. and Singh R.K. (2012): Higher order shear and normal deformation theory for natural frequency of functionally graded rectangular plates.– Nuclear Engineering and Design, vol.250, pp.8-13.
 
16.
Merazi M., Tounsi A. and Merdaci S. (2020): A refined of trigonometric shear deformation plate theory based on neutral surface position is proposed for static analysis of FGM plate.– Procedia Structural Integrity, vol.26, pp.129-138.
 
17.
Hosseini-Hashemi Sh., Fadaee M. and Atashipour S.R. (2011): A new exact analytical approach for free vibration of Reissner–Mindlin functionally graded rectangular plates.– International Journal of Mechanical Sciences, vol.53, pp.11-22.
 
18.
Uymaz B. and Aydogdu M. (2007): Three-dimensional vibration analyses of functionally graded plates under various boundary conditions.– J Reinforced Plast. Compos., vol.26, No.18, pp.1847-1863.
 
19.
Matsunaga H. (2008): Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory.– Composite Structures, vol.82, pp.499-512.
 
20.
Rezaei A.S. and Saidi A.R. (2016): Application of Carrera Unified Formulation to study the effect of porosity on natural frequencies of thick porous-cellular plates.– Composites Part B: Engineering, vol.91, pp.361-70.
 
21.
Askari M., Saidi A.R., Rezaei A.S. and Badizi M.A. (2018): Navier-type free vibration analysis of porous smart plates according to reddy’s plate theory.– International Conference on Mechanics of Advanced Materials And Equipment, p.13.
 
22.
Merdaci S. and Hadj Mostefa A. (2020): Influence of porosity on the analysis of sandwich plates FGM using of high order shear-deformation theory.– Frattura ed Integrità Strutturale, vol.51, pp.199-214.
 
23.
Benachour A., Tahar H. D., Atmane H. A., Tounsi A. and Ahmed M. S. (2011): A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient.– Composites Part B: Engineering, vol.42, No.6, pp.1386-1394.
 
24.
Belabed Z., Houari M. S. A., Tounsi A., Mahmoud S. R. and Bég O. A. (2014): An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates.– Composites Part B: Engineering, vol.60, pp.274-283.
 
25.
Ait Yahia S., Ait Atmane H., Houari M. S. A. and Tounsi A. (2015): Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories.– Struct. Eng. Mech., vol.53, No.6, pp.1143-1165.
 
26.
Zhao J., Wang Q., Deng X., Choe K., Zhong R. and Shuai C. (2019): Free vibrations of functionally graded porous rectangular plate with uniform elastic boundary conditions.– Composites Part B, vol.168, pp.106-120.
 
27.
Merdaci S. (2019): Free vibration analysis of composite material plates “Case of a typical functionally graded FG plates ceramic/metal” with porosities.– Nano Hybrids and Composites (NHC), vol.25, pp.69-83.
 
28.
Merdaci S., Hadj Mostefa A., Merazi M., Belghoul H., Hellal H. and Boutaleb S. (2020): Effects of even pores distribution of functionally graded plate porous rectangular and square.– Procedia Structural Integrity, vol.26, pp.35-45.
 
29.
Merdaci S. and Hadj Mostefa A. (2020): Free vibration analysis of composite material plates with porosities based on the first-order shear deformation theory.– Journal of Mineral and Material Science (JMMS), vol.1, No.3, pp.1-2.
 
30.
Mouaici F., Benyoucef S., Ait Atmane H. and Tounsi A. (2016): Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory.– Wind and Structures, vol.22, No.4, pp.429-454.
 
31.
Zhu J., Lai Z., Yin Z., Jeon J. and Lee S. (2001): Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy.– Mater. Chem. Phys., vol.68, No.1, pp.130-135.
 
32.
Wattanasakulpong N., Prusty B.G., Kelly D.W. and Hoffman M. (2012): Free vibration analysis of layered functionally graded beams with experimental validation.– Mater. Des., vol.36, pp.182-190.
 
33.
Merdaci S. (2018): Analysis of bending of ceramic-metal functionally graded plates with porosities using of high order shear theory.– Advanced Engineering Forum, vol.30, pp.54-70.
 
34.
Zenkour A.M. (2018): A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities.– Composite Structures, vol.201, pp.38-48.
 
35.
Merdaci S. and Belghoul H. (2019): High order shear theory for static analysis functionally graded plates with porosities.– Comptes Rendus Mecanique, vol.347, No.3, pp.207-217.
 
36.
Wattanasakulpong N. and Ungbhakorn V. (2014): Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities.– Aerosp. Sci. Technol., vol.32, No.1, pp.111-120.
 
37.
Rezaei A.S., Saidi A.R., Abrishamdari, M. and Pour Mohammadi M.H. (2017): Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: An analytical approach.– Thin-Walled Structures, vol.120, pp.366-377.
 
38.
Rezaei A.S. and Saidi A.R. (2017): On the effect of coupled solid-fluid deformation on natural frequencies of fluid saturated porous plates.– European Journal of Mechanics-A/Solids, vo.63, pp.99-109.
 
39.
Reddy J.N. (2002): Energy principles and variational methods in applied mechanics.– Wiley, New York.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top