Department of Mathematics, Prasad V Potluri Siddhartha Institute of Technology, Vijayawada-520007, Andhra Pradesh, India
2
Department of Mathematics, Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering and Technology (VNR VJIET), Bachupaly, Hyderabad-500090, India
3
Department of Aeronautics and Astronautics, Air Force Institute of Technology, Wright Patterson Air Force Base Dayton, Ohio 45433, USA
Online publication date: 2021-06-22
Publication date: 2021-06-01
International Journal of Applied Mechanics and Engineering 2021;26(2):160-172
In this paper, we have studied a method based on exponential splines for numerical solution of singularly perturbed two parameter boundary value problems. The boundary value problem is solved on a Shishkin mesh by using exponential splines. Numerical results are tabulated for different values of the perturbation parameters. From the numerical results, it is found that the method approximates the exact solution very well.
REFERENCES(29)
1.
Hirsh C. (1988): Numerical Computation of Internal and External Flows.– John Wiley & Sons, Chischester, vol.1.
Baumert H., Braun P., Glos E., Muller W.D. and Stoyans G. (1981): Modelling and computation of water quality problems in river networks.– Lecture Notes in Control and Information Sciences, Springer-Velag, Berlin, pp.482-491.
Markowich P.A., Ringhofer C.A., Selberherr S. and Lentini M. (1983): A singular perturbation approach for the analysis of the fundamental semiconductor equations.– IEEE Trans. Electron Device, vol.30, pp.1165-1180.
Allen D. N. and de G.Southwell R.V. (1955): Relaxation methods applied to determine the motion in two dimensions of a viscous fluid past a fixed cylinder.– Quart. J.Mech. Appl. Math., vol.8, pp.129-145.
Il’in A.M. (1969): A difference scheme for a differential equation with a small parameter multiplying the highest derivative (in Russian).– Mat. Zametki, vol.6, pp. 237-248, English translation: Math. Notes., vol.6, No.2, pp.596-602.
Kellogg R. B. and Tsan A.(1978): Analysis of some difference approximations for a singular perturbation problem without turning points.– Math. Comp., vol.32, No.144, pp.1025-1039.
Berger A.E., Soloman J.M. and Ciment M. (1981): An analysis of a uniformly accurate difference method for a singular perturbation problem.– Math. Comp., vol.37, No.155, pp.79-94.
Hegarty A.F., Miller J.J.H. and O’Riordan E. (1980): Uniform second order difference schemes for singular perturbation problems. Boundary and interior layers computational and asymptotic methods.– Proc. Conf., Trinity College, Dublin, pp.301-305.
Bakhvalov N.S. (1969): On the optimization of the methods for solving boundary value problems in the presence of a boundary layer (in Russian).– Z. Vycisl. Mat i Mat. Fiz., vol.9, pp.841-859.
Shishkin G.I. (1989): Approximation of solutions of singularly perturbed boundary value problems with a parabolic boundary layer.– U.S.S.R. Comput. Math. and Math. Phys., vol.29, No.4, pp.1-10.
Miller J.J.H., O’Riordan E. and Shishkin G.I. (1996): Fitted Numerical Methods for Singular Perturbation Problems. Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions.– World Scientific, Singapore, p.192.
O’Malley Jr. R.E. (1967): Singular perturbations of boundary value problems for linear ordinary differential equations involving two-parameters.– J. Math. Anal. Appl., vol.19, pp.291-308.
Vulanovic R. and Ohio C. (2001): A higher order scheme for quasilinear boundary value problems with two small parameters.– Computing, vol.67, pp.287-303.
Linss T. (2010): A posterior error estimation for a singularly perturbed problem with two small parameters.– Int. J. Numer. Anal. Model., vol.7, pp.491-506.
Zahra W.K. and Ashraf M. EI Mhlawy (2013): Numerical solution of two-parameter singularly perturbed boundary value problems via exponential spline.– King Saud University, vol.25, pp.201-208.
Linss T. and Roos H-G. (2004): Analysis of a finite-difference scheme for a singularly perturbed problem with two small parameters.– J.Math.Anal.Apppl., vol.289, pp.424-442.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.